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Abstract

We disentangle the relevance of risk factors versus stock characteristics in

the cross-section of expected returns not only by analyzing covariance pat-

terns in returns, but also by starting from economic first principles of price

formation, i.e. by employing the information content of institutional port-

folio holdings. Our main contribution is to show that excess demand from

13(f) institutional investors is strongly affected by ex-ante known stock char-

acteristics but not so by risk factors. Furthermore, we find strong evidence

that this characteristics-induced demand is pricing-relevant and therefore

reflected in the cross-section of returns. Our results can explain recent ev-

idence which shows little explanatory power for risk factors once tested on

bias-corrected individual stock level. Robustness checks discard the concern

that our results are driven by latent risk factors, poor factor proxies or that

it can be easily arbitraged away. (142 words)

*Department of Banking & Finance, University of Innsbruck, Universitätsstrasse 15, 6020

Innsbruck, Austria, +43(0)512 50773100, corresponding email: jochen.lawrenz@uibk.ac.at



A. Introduction

Risk factor models are an integral part of canonical asset pricing theory and factor

investing has become a well-established industry standard. Despite the enormous

and prominent literature on multi-factor models, the academic research is still

somewhat ambiguous with respect to the relative significance of factor- versus

characteristics-based explanations of the cross-section of expected returns. Based

on novel econometric approaches, a growing number of recent contributions cast

renewed and serious doubts on risk-factor models by showing that stock char-

acteristics carry substantial risk premia, while prominent risk factors turn out

insignificant. Jegadeesh et al. (2019) conclude their analysis by stating that ”...

none of the factors from those asset pricing models are associated with a signif-

icant risk premium after controlling for corresponding firm characteristics. [...],

so it represents a puzzle that calls for further research.”. We add a piece to this

puzzle by arguing that it will be insufficient to answer the question by focussing on

the analysis of the covariance structure of returns alone, since – loosely speaking

– even a characteristics-based demand for certain stocks can manifest itself em-

pirically as a covariance pattern that, in turn, may be interpreted as a risk factor.

Instead, we propose to exploit information on institutional investors’ demand and

show that institutional portfolio holdings are significantly driven by characteristics

but not by factors and that their portfolio tilts carry over to the cross-section of

expected returns.

Over the past decades, the literature has produced a staggering number of so-called

characteristics-based anomalies, and not at least in response to Cochrane (2011)’s

famous call to ’tame the factor zoo’, a rapidly growing body of literature attempts

to establish order. Recent contributions by Kozak et al. (2018), or Kelly et al.

(2019) discard characteristic anomalies and argue that only factor risk exposure

matters by either invoking arbitrage arguments (Kozak et al., 2018) or by control-

ling for exposure to latent risk factors (Kelly et al., 2019). On the other hand,

Chordia et al. (2015), Pukthuanthong et al. (2019), Jegadeesh et al. (2019), and

Kim et al. (2021) find strong support for characteristics and against risk factors.

Their novel appraisal of factor models is derived from econometric advancements

to cope with the notorious errors-in-variables (EIV) problems. Being able to con-

trol the EIV problem and testing factor models on stock-level data leads them to

reject many risk factors, which have long been well-known from studies based on

portfolios as test assets. The apparent contradiction between the two strands of
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the literature reflects a deeper underlying identification dilemma, that has recently

been stressed by e.g. Kozak et al. (2018) and Pastor et al. (2020). They emphasize

that a sufficiently large characteristics-induced investor demand will generate em-

pirical return patterns which can always mechanically be attributed to unobserved

latent risk factors, but that such an interpretation will “miss the underlying eco-

nomics”.1 We strongly agree with this assessment and argue that the attempt to

disentangle taste for characteristics from aversion to risk factors should start from

economic first principles of price determination, i.e. from modelling and analyzing

investor demand. Our contribution does so by being – to the best of our knowledge

– the first study that explains the relevance of factors vs. characteristics via an

analysis of institutional portfolio holdings.

As the underpinning of our empirical analysis, we put forward a theoretical model

where investors derive direct utility from stock/firm characteristics.2 The result-

ing equilibrium pricing equation shows that beyond the usual covariance with

state variables, the excess returns will depend on ex-ante known characteristics.

We take this prediction to the data, whereby our empirical identification strat-

egy proceeds in essentially three steps: (i) In line with much of the literature,

the pricing equation can be tested within a Fama and MacBeth (1973) regression

framework. Thereby, we follow the recent econometric improvements from Chor-

dia et al. (2015), Pukthuanthong et al. (2019), Jegadeesh et al. (2019) to estimate

factor and characteristics premia on individual stock level by implementing the

mean beta approach of Pukthuanthong et al. (2019) as well as the instrumental

variables approach recently proposed by Jegadeesh et al. (2019). (ii) Unlike prior

literature, we then focus on institutional demand as dependent variable. More

precisely, we measure excess demand for individual stocks by institutional 13(f)-

filers and label it as their portfolio tilt. We regress stock-level portfolio tilts on

factors and characteristics within a panel regression model in order to test if tilts

are related to taste for certain characteristics or to risk factors. (iii) Even more

importantly, in order to establish the economic link, we regress stock-level excess

returns on investors’ portfolio tilts within a panel regression to see if institutional

investors’ excess demand is pricing-relevant. If investors’ demand is driven by

characteristics and this excess-demand is pricing-relevant, than we conjecture the

1Pastor et al. (2020), p. 7. In the same sense, Kozak et al. (2018) argue that any empirical
’horse race’ between factors versus characteristics is futile if it is based on ’reduced-form’ models,
i.e. if it is done on the basis of return data alone or without any strong theoretical structure.

2Our theoretical model shares many similarities with Pastor et al. (2020). A notable difference
is that Pastor et al. (2020) only consider the additional preference for ESG preferences, while
our model is more general in the sense of allowing for an arbitrary number of characteristics. In
this sense, our model is a straightforward extension to the Pastor et al. (2020) model.
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link to be strongest when regressing the characteristics-induced return premium

against the characteristics-induced excess demand.

We illustrate the core of our findings in Figure 1, which plots (absolute) regression

t-stats for the six risk factors and 18 characteristics which we test on a compre-

hensive CRSP-sample (1975-2016, monthly data). The left panel reports results

for excess returns as dependent variable, while the right panel shows results for

institutional portfolio tilts. Following Harvey et al. (2016)’s suggestion to use a

t-stat-hurdle of 3, only bars exceeding this threshold (indicated as the dashed line)

are colored. Panel (a) shows that for excess returns none of the (usual) risk factors

Figure 1: Main result. We report t-stats for slope coefficients on risk factors and characteristics
as bar chart from return regression (left panel) and tilt regression (right). Horizontal dashed
lines indicate significance levels of the usual 1% level and the more strict level of t = 3 according
to Harvey et al. (2016). Only t-stats exceeding 3 are reported as bold. From return regressions
(left panel), we find that none of the 6 risk factors, but 9 out of 18 characteristics exceed t = 3.
When regressing portfolio tilts of institutional investors on risk factors and characteristics, we
find 1 out of 6 risk factors, but 13 out of 18 characteristics which exceed t = 3.

exceeds a t-stat of 3, while 9 out of 18 characteristics do so quite comfortably. This

result is well in line with the recent literature and documents the poor performance

of risk factors once they are tested on individual stock-level data.3 While this re-

sult is not new to the literature, panel (b) highlights the novel contribution of our

analysis. We take institutional investors’ portfolio tilts as dependent variable and

document a strikingly similar pattern. 13 out of 18 characteristics exceed a t-stat

of 3 with values ranging up to 22, while there is only one single risk factor (rmw

Robust-Minus-Weak) that turns out significant.4 The similarity of results suggests

that investors’ demand strongly depends on various stock characteristics and that

3Under the common, but less strict 5% confidence level, the size and momentum factor would
survive, while the number of significant characteristics would grow to 12 out of 18.

4On the 5%-level, we find momentum as well as size as (marginally) significant factors, whereas
14 out of 18 characteristics are significant.
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these preferences carry over to the cross-section of expected returns. To rule out

a spurious link, we apply various tests to corroborate the pricing-impact of insti-

tutional investors excess demand, and find strong support that our portfolio tilt

measure explains excess returns. When regressing stock-level returns on portfolio

tilts, the estimated coefficient turns out significantly negative. Besides confirm-

ing the pricing-impact, we also find that institutional investors’ portfolios are (on

average) tilted towards underperforming stocks. Our negative relation confirms

results by e.g. Edelen et al. (2016), who show that institutional investors have pref-

erences to invest in the short leg of anomalies and thereby underperform ex post.

We further decompose returns as well as portfolio tilts into factor and characteris-

tics components and find that only the characteristics-induced tilt component is a

significant explanatory variable, and that only the characteristics-induced excess

return is significantly affected by the portfolio tilts. Taken together, our results

provide novel demand-based evidence that taste for characteristics are significantly

more important than aversion to risk factors in the explanation of the cross-section

of expected returns.

We corroborate our findings by various robustness checks and discard several rel-

evant concerns: First, we address the concern raised in e.g. Kelly et al. (2019)

that characteristics may be driven by latent risk factors. We replace the six risk

factors by those (four) latent factors identified by Kelly et al. (2019), and still

find strong support for our result. Exactly the same set of characteristics remain

strongly significant, while out of Kelly et al. (2019)’s four latent risk factors, only

the first one is (marginally) significant. Second, we show that our analysis is ro-

bust to the risk-proxy hypothesis, which describes the concern that characteristics

are (merely) better proxies for the true, unobserved risk factors. We do so by

implementing the IV-mean estimator developed by Jegadeesh et al. (2019) and

by allowing characteristics to be conditioning variables for factor loadings such

as in e.g. Harvey and Liu (2021) and Hoechle et al. (2020). Within the latter

approach, we complement our cross-sectional approach by panel models. Third,

we address the argument raised in e.g. Kozak et al. (2018) that arbitrage forces

should drive out the pricing-impact of characteristics. We show that the aggre-

gate institutional portfolio tilts in our characteristics display strong persistence

over long horizon which imposes high practical arbitrage restrictions and thereby

prevent characteristics from being arbitraged away. Finally, we drop stocks with

the smallest 20% (NYSE breakpoints) market capitalization and show that we find

weaker but still comparable and consistent results within the large stock sample.
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Our main novel contribution to the literature is the demand-based evidence for the

relevance of stock/firm characteristics. Thereby, we restrict our attention to (nine)

prominent aspects such as: Size, value, momentum, liquidity, volatility, system-

atic risk, distress, profitability and investment. We propose a novel identification

strategy for these characteristics which consists in transforming them into (binary)

indicator variables rather than treating them as metric variables. The indicator is

defined by the event that at time t for stock i, the (metric) characteristic variable

Φi,j was part of the α-quantile of the cross-sectional characteristics distribution

F (Φ) for an extended period of the last T months, i.e. we define characteristics

labels as φi,j,t = 1Ei,j,t
, with event Ei,j,t = {

(
Φi,j,s > F (Φ)αi,j,s

)
t−T≤s≤t−1

}. Essen-

tially, the definition captures the idea that a stock is perceived as having a certain

characteristic only if its realized value was among the top (bottom) quantile for

several consecutive months, i.e. if the realized characteristic is a salient signal to

investors both in the cross-section and over time. Applying the indicator to the

top (α) and bottom (1 − α) quantile for the nine characteristics above leads to

the consideration of 18 binary characteristics. Our rationale for defining (binary)

characteristics labels is fourfold: First, it is inspired by the usual portfolio sorts

approach in the tradition of Fama and French (1993). Unlike for the factor con-

struction, we do not form long-short portfolios, but attribute characteristics labels

on individual stock level. Second, our construction follows agency-theoretic argu-

ments such as the ones raised in Lakonishok et al. (1992) and more recently by

Edelen et al. (2016) who emphasize that delegated asset managers prefer invest-

ments which are easy to communicate to clients and therefore they react to salient

signals of individual stocks. Third, a growing strand of the literature, exemplified

by Shiller (2017) and Hirshleifer (2020), stresses the role of narratives in financial

markets. Investing is a social activity and narratives emerge from repetitive simi-

lar signals, leading to the manifestation that a certain stock is perceived as being,

say, a particularly illiquid stock. Fourth, on the methodical level, our binary labels

mitigate the above-mentioned concern that characteristics could be better proxies

for the true betas. Jegadeesh et al. (2019) show that an estimator which is robust

to this concern uses a time-series average of characteristics.5 Therefore, since our

characteristics labels are defined over the past T months (in the main analysis,

we use T = 6 months), our results are less prone to this potential misattribution

problem.

In particular against the background of delegated asset management, we use data

from institutional investors portfolio holdings to test the relevance of characteris-

5See their IV mean-estimator in Proposition 2 and equation (25) in Jegadeesh et al. (2019).
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tics labels. We use quarterly holdings data from institutional 13(f)-filings between

1990Q1 and 2015Q4. As empirical proxy for institutional excess-demand, we intro-

duce portfolio tilts, which we operationalize as the percentage share of an individual

stock i aggregated over all 13(f)-filers relative to its market capitalization (in per-

centage). Thus, tilt values above (below) one imply that institutional investors

overweigh (underweigh) a particular stock relative to the market benchmark. In

contrast to other measures such as the number of institutional investors, or the

percentage of shares held by institutionals, which has been used in prior literature

(see e.g. Edelen et al. (2016)), our proposed tilt measure has the advantage of

being readily interpretable as excess demand and accounts for time-varying levels

of aggregate institutional ownership.

Our contribution is related to a voluminous literature on factor identification,

which Pukthuanthong et al. (2019) consider as the (arguably) most important topic

in finance.6 Equilibrium asset pricing literature predominantly relies on the idea,

succinctly summarized by Cochrane (2005) that ”asset returns depend on how you

behave, not who you are - on betas rather than characteristics [...]“.7 But ever since

the documentation of the size (Banz, 1981), book-to-market (Stattman, 1980), or

leverage effect (Bhandar, 1988) and the development of the Fama and French

(1993) three-factor model, there is ongoing discussion about the relevance of risk

factors versus firm/stock characteristics. After early contributions by e.g. Daniel

and Titman (1997) and Davis et al. (2000), this dispute more recently received

renewed and reinforced interest spurred by a staggering proliferation of ’new’ fac-

tors and anomalies. Harvey et al. (2016) count over 316 pricing relevant factors

and characteristics in the literature. Green et al. (2017) identify 94 characteristics

and find that only few of them provide independent information. Pukthuanthong

et al. (2019) emphasize that not all contributions draw a sharp distinction between

(known) characteristics and risk factor which leads to confusion in the usage of

the terminology. Thus, two (related) strands have emerged in the literature that

tackle the issue from different directions. First, different approaches have been

proposed to reduce dimensionality. While Harvey et al. (2016) highlights the

multiple-testing problem and suggests to increase the t-stat hurdle, papers such

as Kelly et al. (2019), Light et al. (2017), Kim et al. (2021), Feng et al. (2020)

use more advanced econometric techniques to link (a large number of) observed

characteristics to (only few) unobservable latent factors. In particular, Kelly et al.

6(See Pukthuanthong et al., 2019, p. 1575)
7(Cochrane, 2005, p. 79)
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(2019) argue by using instrumented principal component analysis that latent fac-

tor risk exposure rather than characteristics explain average returns. Second, in

the spirit of Daniel and Titman (1997), a number of recent contributions such as

Chordia et al. (2015), Jegadeesh et al. (2019), and Pukthuanthong et al. (2019) put

their focus on the head-to-head comparison of risk factors versus characteristics

by using different econometric improvements to overcome methodological prob-

lems in the Daniel and Titman (1997) analysis that have been discussed e.g. in

Kozak et al. (2018) and Kim et al. (2021). In particular, Chordia et al. (2015) and

Jegadeesh et al. (2019) propose ways to deal with the errors-in-variables problem

which in turn allows estimation on individual stock level in contrast to the usual

portfolio approach. Their results are significant challenges to risk factor models

as they find little to no support for the common, well-established risk factors, but

strong support for characteristics.

Any horse-race between factors and characteristics faces at least two challenges:

First, Kozak et al. (2018) emphasize that arbitrageurs are supposed to eliminate

any profit opportunities that arise from sentiment driven demand distortions which

are not aligned with common factor covariances, and that mispricing can only

persist if arbitrageurs are exposed to factor risks when trading against sentiment

investors’ demand distortions. Second, the finding of significant characteristics

leaves open the possibility that they capture the statistical significance not due

to being a genuine alternative explanatory variable, but due to being a better

proxy for the (unobservable) true risk factor(s). This so-called risk-proxy hy-

pothesis is addressed by various papers such Kelly et al. (2019), and Kim et al.

(2021). However, approaches such as the instrumented PCA of Kelly et al. (2019)

let the pendulum swing back to the other extreme in the sense that almost all

characteristics are found to be (merely) proxies for latent risk factors, which can

intuitively be understood by the fact that such econometric dimension-reduction

techniques are prone to attributing any covariance patterns to latent risk factors.

Kim et al. (2021) instead propose a PCA-based method which is designed to give

characteristics maximal explanatory power for risk loadings before concluding that

characteristics represent mispricing. With this refinement, they show that after

controlling for the risk-proxy hypothesis, there is still strong support for charac-

teristics. On a general level, although econometric identification strategies are

constantly improving, the approach of relying on return data alone will always be

subject to the dilemma recently discussed in Kozak et al. (2018) and Pastor et al.

(2020) that also a common taste for characteristics can manifest itself as an omit-

ted priced risk factor. Therefore, in order to not miss the underlying economics,

it appears inevitable to turn to first principles of price determination which is
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to analyze investor demand directly. The recent review article by Brunnermeier

et al. (2021) underscores the importance of intermediary asset pricing and asks to

develop successful asset pricing models, which ”explain not only prices, but both

prices and quantities, including portfolio holdings and flows”.8 Our contribution

speaks to this call.

B. Methodology

B.1. Modeling demand towards stock and firm character-

istics

As underpinning to our empirical approach, we put forward a theoretical model

which allows for an arbitrary number of risk factors as well as particular tastes for

known characteristics. We derive explicit demand functions and the equilibrium

pricing equation. This section sketches the main steps, while Appendix A contains

the detailed model derivation and description. We consider a market with K

investors whose risky final wealth W k
1 = W k

0 [1 + (rf + x′k(r − rf1))] is derived

from investing in N assets. W k
0 denotes initial wealth, rf the risk-free rate, r the

return vector of the N−1 risky assets, and x′k the holdings vector. We next depart

from the standard modelling approach by specifying the following general utility

function.

uk(W k
1 ,φ,Z) = −e−akWk

1 +ak
∑J

j b
k
j φj+ak

∑H
h ckhZh , (1)

Besides deriving utility from terminal wealth, we allow investors’ utility to be

affected by an arbitrary number of characteristics φ and risk factors Z. ak measures

constant absolute risk aversion, bkj is the (relative) attitude towards the asset’s

characteristic j, and ckh is the attitude towards risk factor Zh impacting the asset

returns. We impose no restriction on the sign of bkj , which means that investors

can derive non-pecuniary utility or disutility. Note that characteristics φj are not

assumed to be random variables but ex ante known quantities.9 Determining the

expected utility and solving the first-order condition, leads to the optimal portfolio

8Brunnermeier et al. (2021)p. 2144.
9Note further, that by setting bkj and ckh equal to zero for all investors, the model simply leads

to the well-known Sharpe-Lintner-Mossin capital asset pricing model.
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weights which can be expressed as

x∗k =
Σ−1(µ− rf1)

akW k
0

−
J∑
j=1

Σ−1b̂kjφj

akW k
0︸ ︷︷ ︸

characteristics taste

−
H∑
h=1

Σ−1ckhCov(r, Zh)

akWK
0︸ ︷︷ ︸

factor risk aversion

. (2)

The demand function in (25) consists of three parts. While the first term reflects

the standard systematic market risk and the last part represents further factor

risk in the usual sense of covariance, the middle part shows that demand is explic-

itly affected by investor k’s taste for known characteristics. Agents with positive

preferences for a particular stock characteristic thus receive non-pecuniary utility

from investing into assets that exhibit a particular characteristic and are therefore

willing to accept a lower expected returns. The model by Pastor et al. (2020) is a

potential example for this type of characteristic preferences, which they interpret

as preferences for green (i.e. sustainable) stocks. Furthermore, we build upon the

argument in Pastor et al. (2020) that as long as the mass of agents that care about

a characteristic is non-zero, this leads to differences in expected returns among

stocks and alphas when regressing stock returns on factors. Hence, any relation

between characteristics and returns is fundamentally driven by heterogenous in-

vestors’ preferences and the resulting demand distortions. The demand function

(25) represents also the theoretical basis of defining a relative portfolio tilt in stock

i by (a subset of) investors. Aggregating demand over all K investors leads to the

market weights vector xM =
∑K

k=1 x∗kW
k
0 /W

M
0 , where WM

0 denotes market capital-

ization, i.e. the aggregate invested wealth (in risky assets). By splitting investors

into a subset of P professional investors and the remaining R = K − P retail in-

vestors, we can decompose market weights and define (the vector of) professional

investors’ portfolio tilts TP (by elementwise vector division, i.e. the Hadamard

operator �) as

xMW
M
0 =

P∑
k=1

x∗kW
k
0 +

K∑
k=P+1

x∗kW
k
0 ≡ xPW

P
0 + xRW

R
0 ,

TP = xP � xM. (3)

From the demand function (25), we derive equilibrium expected returns which are

determined by the following central pricing equation:

µ− rf1 = κMΣxM +
J∑
j=1

κjφj +
H∑
h=1

κhCov(r, Zh). (4)
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Analogously to the demand function, equilibrium expected excess returns can be

decomposed into three parts, where κM , κj, and κh aggregate the risk aversion and

attitude parameters a, b, and c.10 With appropriate rearrangements, equation (4)

can be transformed into the beta representation µi− rf = βiM κ̂M +
∑H

h=1 βihκ̂h +∑J
j=1 κjφij , which shows that the excess return of asset i is a function of the

asset’s beta with the market, the H mimicking portfolios, the return contribution

of the market plus the return contributions of the relevant characteristics j. Note

that betas in this representation will have the interpretation of standard bivariate

OLS betas, not multivariate regression betas. We consider the beta representation

of equation (4) as basis for our empirical approach, which is outlined in the next

sections.

B.2. Empirical Methodology

While the beta representation of (4) can be considered as the theoretical motivation

for regressing returns on characteristics and factors, our empirical analysis strives

for the more ambitious goal of identifying the relevance of characteristics versus risk

factors in investors’ revealed preferences and thus to shed light on the transmission

channel from investors’ preferences to the pricing of the cross-section. Figure (2)

illustrates our identification strategy in a stylized way and shows our basic idea that

investors have specific preferences with respect to factor risk exposure and known

firm and stock characteristics. Investors’ preferences are reflected in their demand

and portfolio choices, which in turn may find their repercussion in stock returns and

their corresponding risk and characteristics premia. We distinguish three steps in

Figure 2: In this figure we provide a stylized and simplified illustration of the proposed trans-
mission channel from (institutional) investor’s risk aversion and characteristic preferences into
factor and characteristic related return premiums. Investors observe stock characteristics and
assess the factor risk of stocks. Based on their internal risk aversion and preferences for charac-
teristics this leads to demand for stocks/assets. Investors reveal their characteristic preferences
and risk aversion through their observable portfolio holdings/tilts. Demand tilts may translate
into factor and characteristic related return premiums.

Factor Risk
Exposure

Factor Premiums

Investors’ Risk and
Characteristic
Preferences

(e.g. social or
agency induced)

Investors’ Demand
Institutional Tilts/
Portfolio Holdings

Stock Returns

Firm/Stock
Characteristics

Characteristic
Premiums

10See the appendix for details.
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our analysis: First, in line with a voluminous literature, we run Fama and MacBeth

(1973) regression of monthly returns on factor betas and characteristics to directly

test for the pricing relevance of factors vs. characteristics. Second, we run panel

regressions of institutional demand tilts on factor betas and characteristics, thereby

testing for revealed characteristic preferences and risk aversion. Third, we conduct

panel regressions of quarterly returns on past demand tilts to test whether factor

tilts are pricing relevant. This test aims at establishing the economic link, which

explains if preference-induced demand manifests itself in return premia. While the

results from the first step are not new to the literature, we are – to the best of our

knowledge – the first to address steps two and three.

Fama and MacBeth (1973) Pricing Test and EIV Correction

First, we estimate return contributions of factors and characteristics by applying

the Fama and MacBeth (1973) two-step regression approach. We run monthly

cross-sectional regressions of stock-level excess returns rexit on historical factor be-

tas and binary characteristic labels. The set of risk factors includes the five factors

according to Fama and French (2015) augmented with the momentum factor of

Carhart (1997). The factor betas (i.e. historical factor risk exposures) for these

six risk factors are themselves estimates from a first step rolling time-series re-

gression. As characteristics, we include: Trading liquidity, market capitalization,

book-to-market ratio, momentum, return-volatility, market beta, financial distress,

asset-growth and operating profitability. We implement characteristics as a binary

variable which we interpret as characteristics label whose construction is outlined

in more detail in Section B.3 on data description.

The cross-sectional regression equation can be summarized as

rexit = γ0t +
H∑
h=1

γh,tβ̂i,h,t−1 +
J∑
j=1

γj,tφi,j,t−1 + εi,t ∀ t = 1, ..., T (5)

In this regression γ0t is the unexplained alpha, γht are the return contributions

of the factors, and γjt are the return contributions of the binary characteristics

labels of month t. The average premium associated to factor h and characteristic

j is estimated as the time-series average of the individual factor and characteristic

premium estimates.

It has long been recognized, that this two-step estimation procedure leads to a

potential errors-in-variables bias. In order to avoid the portfolio sorts approach

(which is known to introduce a factor structure itself) and to run our tests on
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individual stock level, we implement two recently proposed EIV corrections. First,

we follow the simple approach by Pukthuanthong et al. (2019) who replace the in-

dividual stock beta β̂i,h,t−1 by the equal weighted average beta of all stocks which

were assigned within the same size-market factor category at time t−1. The mean

beta is held constant for one calendar year starting in July. The procedure is re-

peated for all h factors. We refer to this EIV correction method as the mean beta

approach. Second, we implement the recently developed instrumental variables

approach of Jegadeesh et al. (2019), who propose to estimate betas from disjunct

sets of odd and even calendar months. In the cross-sectional second stage regres-

sion odd month betas can be used as explanatory variables and even month betas

as instruments when month t is an odd month and vice versa for even months.

Jegadeesh et al. (2019) show that the measurement errors of odd and even month

betas are uncorrelated – therefore the instrumental variables method yields con-

sistent risk premium estimates.

We contrast both EIV corrections with simple (uncorrected) OLS results. As we

will discuss in more detail in the results section (i.e. C.1), we find that our main

results are not affected by the particular choice of EIV correction and are actually

close to OLS results. We find that the IV approach by Jegadeesh et al. (2019) suf-

fers from an increasing number of severe outliers when estimating the full model,

thus we report results from the mean beta approach by Pukthuanthong et al.

(2019) as our baseline specification.

Using the estimated return contributions from the Fama and MacBeth (1973)

regression it is possible to decompose cross-sectional return variation into relative

contributions of factor loadings/betas and characteristics. This was shown and

implemented by Chordia et al. (2015) (recently refined by Raponi et al. (2020))

and we apply a slightly adapted version of their approach. In order to compute

the model’s explained return we use the individual monthly estimates γ̂ instead of

the full sample means as in Chordia et al. (2015). This adapted approach has the

advantage that it allows to control for structural changes over the sample period,

meaning that it allows for more variation in the explanatory power of factors vs.

characteristics. Specifically, the excess return r̂exit of stock i, which is explained by
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the model in month t is11

r̂exit = γ0t +
H∑
h=1

γ̂htβ̂i,h,t−1︸ ︷︷ ︸
r̂ex,betait

+
J∑
j=1

γ̂jtφi,j,t−1︸ ︷︷ ︸
r̂ex,charit

∀ t = 1, ..., T (6)

where r̂ex,betait and r̂ex,charit are defined as the the factor and characteristic compo-

nents of the model’s explained return. Our goal of the decomposition is twofold.

First, similar to Chordia et al. (2015) we compute from the above Equation

(6) the cross-sectional variance of the explained/fitted returns VCS(r̂ext ) for each

month t across all stocks i and additionally the cross-sectional variance of the beta

VCS(r̂ex,betat ) and characteristic component VCS(r̂ex,chart ). Following Chordia et al.

(2015), we define ratios

VRbeta
t =

VCS(r̂ex,betat )

VCS(r̂ext )
; VRchar

t =
VCS(r̂ex,chart )

VCS(r̂ext )
. (7)

VRbeta
t and VRchar

t can be interpreted as the relative contribution of factor and

characteristics loadings respectively to the overall explanatory power of the full

model for each month t. The ratios do not necessarily add up to one, due to the

potential covariation between the factor and beta component.12Second, we use the

return decomposition in our third step – described in more detail below – where

we assess the impact of investors demand on either component in isolation.

Portfolio Tilt Regressions

As second step, we investigate whether institutional demand tilts are related to

characteristics or past factor risk exposure. We run a panel regression of individual

11Note that the main difference between the approach of Chordia et al. (2015) and our approach
is that Chordia et al. (2015) estimate expected returns using the full sample time series averages
of the estimated γ coefficients for the factors and characteristics. They argue that the time series
averages of the γ coefficients are closer to the true return premia and therefore allow for a better
approximation of the true variation in expected returns. Indeed we argue that using the full
sample time series average of the γ coefficients does not allow to observe any structural changes
over time. Therefore we decide to use the individual monthly estimates. Robustness checks of
our results, where we apply the same method as Chordia et al. (2015) show that the insights of
the return decomposition do not change.
12Note that Chordia et al. (2015) propose an errors in variables correction for the estimated

factor loadings/betas. We decide not to incorporate this EIV correction. First the γ coefficients
are already corrected for a potential EIV bias. Secondly as described by Chordia et al. (2015), the
EIV bias leads to an overstatement of the cross-sectional variation in the true loadings. Therefore,
we argue that using the non-EIV corrected betas likely underestimates the true contribution of
the characteristics relative to the factors. Hence the non-EIV corrected results are a conservative
estimate for the true contribution of characteristics relative to factors.
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stock tilts (in the sense of Equation (3)) at quarterly frequency on binary stock

characteristic labels and historical factor betas.13 We argue, based on our theo-

retical model, that institutional investors’ reveal their preferences with respect to

characteristics and factor risk exposure through their portfolio disclosures. The

explanatory variables include the binary characteristic labels from Section (B.3)

and historical factor betas. We estimate the historical factor betas from univariate

time series regressions of monthly stock returns over a 36-month rolling window

on the five Fama and French (2015) factors and the Carhart (1997) momentum

factor. Consistent with our theoretical model (see Section A.1), we use univariate

factor betas. Thus, we estimate the model

Ti = α0 +
F∑
h=1

θh,tβ̂i,h +
J∑
j=1

θj,tφi,j + ci + pt + εi,t. (8)

Using a panel approach has the advantage to control for fixed effects. We include

firm fixed effects (ci, where E(ci) = 0) to account for unobserved heterogeneity

and time fixed effects pt to control for time trends.14

As robustness check and in order to be consistent with the return regression, we

further implement the Fama and MacBeth (1973) two-step regression approach for

portfolio tilts as dependent variable, i.e. we use the model

Ti,t = α0 +
H∑
h=1

θh,tβ̂i,h,t−1 +
J∑
j=1

θj,tφi,j,t−1 + εi,t, ∀t = 1, ..., T. (9)

Linking Portfolio Tilts to Expected Returns and Return Premia

In the third and final step, we address how institutional investors’ demand tilts

are related to consecutive stock returns via a panel regression model. As the insti-

tutional demand tilt data has quarterly frequency, we compute quarterly returns

from the monthly CRSP return data and match them to the quarterly 13(f)-filings

data via the CUSIP identifier. We aim to address whether institutional demand

tilts are related to consecutive quarterly stock returns. Therefore we regress the

quarterly stock returns of quarter t on the institutional demand tilts of the prior

quarter t − 1.15 Additionally we also control for firm fixed effects ci to control

13The quarterly frequency is dictated by data availability for 13(f) filings.
14Controlling for time fixed effects in this model appears to be particularly reasonable, as

e.g. over the last decades the overall market share of institutional investors increased signifi-
cantly.
15For example this means that the return of the first quarter of a year (i.e. the return that is

realized between the 01.01. and the 31.03.) is regressed on the tilt that is computed from the
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for unobserved heterogeneity. We also include period fixed effects pt to control for

market fluctuations in excess returns. The panel regression model is:

rexit = α0 + β × Ti,t−1 + ci + pt + εi,t (10)

B.3. Data Set and Variable Definition

Our empirical methodology relies on two main data types. First, institutional

portfolio holdings data, and second, cross-sectional characteristics and return data.

Portfolio Holdings Data

Regarding the institutional investors’ portfolio holdings we obtain quarterly port-

folio holdings from institutional 13(f)-filings through the Thomson Reuters insti-

tutional ownership database via WRDS. We exclude bad filings data, whenever

the aggregate number of stocks filed by institutions exceeds the number of shares

outstanding for a particular stock. We compute institutional investors portfolio

tilts for individual stocks according to Equation (3) and winsorize them at the

97% quantile. Corresponding descriptive statistics are provided in Table (13) of

Appendix (B). The sample period is from the first quarter 1990 to the fourth

quarter of December 2015. Within the full sample the mean institutional portfolio

tilt is 0.705. When we remove the smallest 20% of stocks, the mean tilt is 1.07,

thus close to the market weights. The standard deviation in this case is 0.361

showing substantial variation. We report further properties of the tilt measure in

the context of robustness checks in Section D.3.

Return and Characteristics Data

We obtain market data from the CRSP database and financial statement data

from the Compustat database. The data is available from 1962 onwards, while we

choose our sample period from January 1975 to June 2016. We include all common

stocks (share codes 10 and 11 in CRSP) and exclude financial firms. The set of

risk factors16 includes the market (mkt), small-minus-big (smb), high-minus-low

(hml), conservative-minus-aggressive (cma) and robust-minus-weak (rmw) factors

according to Fama and French (2015) augmented with the Carhart (1997) momen-

tum factor (mom), which we obtain from Kenneth French’s webpage.17

fourth quarter’s 13(f) filings (the reporting date is the 31.12.).
16We label risk factors by lower-case letters to distinguish them from upper-case labelled char-

acteristics.
17See mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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For each firm in the sample we obtain and compute several firm and stock char-

acteristics – including market capitalisation, price to book value, monthly return

volatility, illiquidity, return-momentum, market beta, the Campbell et al. (2008)

distress measure, asset growth and operating profitability. Table (1) summarizes

the characteristic variables construction and the corresponding lag structure of

the market and accounting data. The applied lag-structure follows the established

approach in the literature to lag accounting data by 4 months and market data by

1 month (e.g. see Green et al. (2017)).

Table 1: This table provides an overview on the characteristics that we use as the basis for
the construction of the characteristic dummy indicator variables, as described in Section (B.3).
Column 1 contains variable labels. Column 2 describes characteristics as usually referenced
within the asset pricing literature. Column 3 reports how the characteristics are measured. In
Column 4 we report the data frequency of the corresponding characteristic. Column 5 shows the
applied lag structure. Column 6 indicates the lower and upper quantile and the time window
used in the construction of the indicator variable.

φ Characteristic Characteristic Measure Φ Data Frequency Lag Indicator

SZ Size Market capitalization in
Mio. US-Dollars

Monthly 1 month 30/70/6M

PB Value/Growth Price to book ratio Quarterly 4 months 30/70/6M

MO Momentum 6 month momentum; 1 month
skipped (t− 7 to t− 2)

Monthly 1 month 30/70/-

IL Trading Liquidity Amihud (2002) Illiq measure Monthly 1 month 30/70/6M

V O Volatility Monthly return volatility Monthly 1 month 30/70/6M

BT Market Beta Rolling 24-month market beta Monthly 1 month 30/70/6M

FD Financial Distress Campbell et al. (2008) distress
measure

Quarterly account-
ing data, monthly
and daily market
data

4 month18 30/90/12M

OP Profitability Operating profitability ac-
cording to Fama and French
(2015)

Quarterly revenues,
costs and book eq-
uity

4 months 30/70/12M

IV Investments Change in total assets similar
to Fama and French (2015)

Quarterly total as-
sets

4 months 30/70/12M

We restrict our sample to all stocks, where the full set of characteristics is ob-

servable. Particularly the Campbell et al. (2008) distress measure requires that

several accounting measures and market data are completely observable, thus our

sample only includes stocks that offer comprehensive data availability. The final

sample on average includes 3,745 firms per month. In Table 13 of Appendix B we

report descriptive statistics of the stock returns and the individual stock and firm

characteristics.

18Computation similar to Campbell et al. (2008) with accounting data: 2 months lagged and
market data: 1 month lagged; the resulting Campbell et al. (2008) distress measure is lagged by
another 2 months to finally obtain a total 4 month lag for the accounting data
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Consistent with our theoretical model from Section A.1, we translate all stock

characteristics into binary dummy variables that identify the top and bottom

stocks based on a characteristic sorting. More precisely, the indicator is defined

by the event that at time t for stock i, the (metric) characteristic Φi,j,t was part

of the α-quantile of the (contemporaneous) cross-sectional characteristics distri-

bution F (Φ)j,t for an extended period of the last T months, i.e. we define φi,j,t

as

φi,j,t = 1Ei,j,t
, with event: Ei,j,t = {

(
Φi,j,s > F (Φ)αi,j,s

)
t−T≤s≤t−1

}. (11)

By construction, φi,j,t can be interpreted as characteristic labels, reflecting the

idea that investors recognize stock aspects in particular if they are observed over a

longer time-period and if the realization of that characteristic is sufficiently salient.

Our base case parameter choice therefore refers to the 30% and 70%-quantile over

six consecutive months. As indicated in column 6 of Table 1, we deviate from this

choice only for distress FD, profitability OP , and investment IV , for which we

consider the last 12 month since the data frequency is quarterly, and in the case

of FD, we restrict the upper quantile to 90% as empirically only a small fraction

of all firms is in financial distress.19 Regarding the Amihud (2002) Illiq-measure,

the monthly return volatility, market capitalisation, price to book ratio and the

rolling 24-month market beta, we split the sample at the 50% quantile.

We check for the dependence structure among the characteristic labels, by an-

alyzing their variance inflation factors (V IF ) which we report in Table (14) of

Appendix B. We observe that the characteristic dummies for high liquidity ILH

and large market-capitalization SZH are highly correlated. Green et al. (2017) pro-

pose to exclude characteristics that have a variance inflation factor that exceeds

3. We therefore run separate empirical analysis, where we exclude the liquidity

characteristic identifiers.20 We find that none of our main empirical findings are

sensitive to including the liquidity characteristic.

To better understand the dynamic properties of the characteristic dummies, we

calculate the number of times an individual stock changes its status of being as-

signed a given characteristic. We report these results as histograms in Figure 7

in Appendix B. For the size characteristic SZ the mean change of status is less

than 3, consistent with the fact that the ordering of market capitalization has little

19Since momentum MO is already defined over the last six months (i.e. within t− 7 to t− 2),
no (further) time window criteria is necessary.
20We decide to exclude the liquidity characteristic identifiers, as the size characteristic is more

prominent in the literature and typically has higher data reliability compared to the trading
data.
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variation over time. In contrast, for the momentum characteristic MO the mean

number of changes is 20.

Merging the Datasets

We merge the monthly characteristic dummies and historical factor betas from

the monthly CRSP and Compustat sample to the quarterly portfolio holdings

data via the CUSIP identifier.21 The stocks from the asset pricing sample are

(almost) completely in the sample of the institutional 13(f) portfolio holdings.

Thus, we can rule out that our results are driven by data gaps between the two

datasets. For each quarter, we match the characteristic dummies and factor betas

that are available at the beginning of a quarter (i.e. for example for Q4 we use the

characteristic dummies and factor betas computed by the end of September) to

assure that our results are not driven by any forward looking bias. We are aware

of and take into account the reporting delay in 13(f) filings, but since our interest

is not in exploiting 13(f) information in a real-time trading setting, it imposes no

constraint on our analysis.

C. Empirical Results

C.1. The Pricing of Stock Characteristics

This section starts by reporting results from the two-stage Fama and MacBeth

(1973) cross-sectional regression procedure with the mean beta EIV-correction

from Pukthuanthong et al. (2019), as represented in Equation (5). Note, that

according to our model from Section A.1, we use the univariate factor betas in

the second stage of the Fama and MacBeth (1973) regression. This offers the

interpretation that the estimated coefficients correspond to orthogonalized return

contributions of factors and characteristics.

Overall, the results, which are summarized in Table 2, show that stock character-

istics carry large and significant return premiums, while most of the risk factors

are not priced. This findings is well in line with recent results by Chordia et al.

(2015), Pukthuanthong et al. (2019) and Jegadeesh et al. (2019). In our results,

smb is significant with a t-stat of 2.82, and the momentum factor mom is signif-

icant with t = −2.87. However, if we follow Harvey et al. (2016)’s suggestion to

use a t-stat hurdle of 3, no risk factor is significant. Furthermore, according to the

21We thereby follow e.g. Koijen and Yogo (2019), who match 13(f) filings data and the CRSP
data set via the CUSIP identifier.
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factor protocol proposed by Pukthuanthong et al. (2019), a necessary condition

for qualifying as risk factor is the fact that a proposed factor carries a positive risk

premium. According to our results only smb carries a significantly positive risk

premium.
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Table 2: In this table we report the empirical estimation results for the Fama and MacBeth (1973) regressions according to Equation (5): rexit = γ0t +
∑H

h=1 γh,tβ̂i,h,t−1 +∑J
j=1 γj,tφi,j,t−1 + εi,t ∀ t = 1, ..., T . The dependent variable is the monthly excess market return of individual stocks in percent. The explanatory variables are the estimated historical

factor betas and the characteristic labels/indicator dummies. As described in Section (B.2) we apply the EIV correction from Pukthuanthong et al. (2019). In this approach stocks
are sort into deciles of market-capitalistion and factor betas. The individual factor beta is then replaced by the average beta of the corresponding size-beta category. The reported
estimates in the table are the time-series averages of the monthly slope-coefficient estimates. The sample period is January 1975 to May 2016. * denotes significant at 10%, ** denotes
significant at 5%, *** denotes significant at 1%;

(1) Full Model (2) excl. IL (3) CAPM (4) FF3 (5) FF5 (6) FFC6 (7) IL (8) PB (9) MO (10) VO (11) BT (12) SZ (13) FD (14) IV (15) OP

const 0.629 0.672 1.128 1.014 0.998 0.995 0.853 0.955 0.976 1.018 0.998 0.762 0.989 0.982 0.965

(3.15) *** (3.44) *** (5.95) *** (6.05) *** (5.96) *** (6.00) *** (4.99) *** (5.79) *** (6.18) *** (5.73) *** (5.51) *** (4.47) *** (5.42) *** (6.05) *** (6.02) ***

mkt 0.014 -0.009 -0.113 -0.156 -0.130 -0.203 -0.043 -0.145 -0.245 -0.192 -0.213 0.001 -0.164 -0.185 -0.220

(0.14) (-0.09) (-0.71) (-1.15) (-0.95) (-1.49) ** (-0.348) (-1.09) (-1.86) * (-1.51) (-1.59) (0.012) (-1.29) (-1.39) (-1.68) **

smb 0.142 0.142 0.211 0.237 0.186 0.152 0.183 0.172 0.172 0.187 0.135 0.165 0.171 0.188

(2.82) *** (2.80) *** (2.38) ** (2.90) *** (2.40) ** (2.44) ** (2.43) ** (2.42) ** (2.54) *** (2.45) ** (2.27) ** (2.58) *** (2.27) ** (2.56) ***

hml -0.025 -0.025 0.068 0.094 0.004 0.015 -0.021 -0.067 0.001 0.033 0.016 0.010 0.017 0.014

(-0.40) (-0.39) (0.88) (1.24) (0.060) (0.20) (-0.29) (-0.94) (0.010) (0.45) (-0.21) (0.14) (0.22) (0.19)

cma 0.032 0.033 0.002 0.007 0.000 0.019 -0.003 0.016 0.016 0.000 0.023 -0.000 0.10

(0.69) (0.70) (0.03) (0.14) (0.02) (0.39) (-0.08 (0.33) (0.33) (0.02) (0.46) (-0.00) (0.20)

rmw 0.024 0.024 0.061 0.056 0.058 0.043 0.036 0.040 0.065 0.053 0.066 0.066 0.038

(0.56) (0.56) (1.12) (1.07) (1.20) (0.84) (0.73) (0.80) (1.35) (0.107) (1.37) (1.31) (0.78)

mom -0.230 -0.232 -0.364 -0.303 -0.35 -0.317 -0.310 -0.300 -0.263 -0.301 -0.341 -0.369

(-2.87) ** (-2.89) *** (-3.64) *** (-3.24) *** (-3.53) *** (-3.54) *** (-3.55) *** (-3.30) *** (-3.02) * (-3.45) *** (-3.52) *** (-3.81) ***

ILL -0.067 -0.038

(-1.07) (-0.32)

ILH 0.339 0.542

(3.78) *** (3.67) ***

PBL 0.229 0.247 0.390

(3.67) *** (3.90) *** (4.20) ***

PBH -0.320 -0.327 -0.304

(-4.80) *** (-4.89) *** (-3.71) ***
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Table continued:

(1) Full Model (2) excl. IL (3) CAPM (4) FF3 (5) FF5 (6) FFC6 (7) IL (8) PB (9) MO (10) VO (11) BT (12) SZ (13) FD (14) IV (15) OP

MOL -0.192 -0.191 -0.096

(-1.89) ** (-1.87) ** (-0.67)

MOH 0.309 0.299 0.251

(4.12) *** (3.97) *** (2.71) ***

V OL -0.011 -0.035 -0.111

(-0.16) (-0.52) (-0.95)

V OH -0.543 -0.475 -0.055

(-3.60) *** (-3.12) *** (-0.22)

BTL -0.020 -0.010 -0.017

(-0.41) (-0.21) (-0.27)

BTH 0.029 0.024 0.048

(0.49) (0.41) (0.67)

SZL 0.455 0.610 0.650

(4.50) *** (5.74) *** (4.20) ***

SZH -0.036 -0.083 0.030

(-0.50) (-1.02) (0.26)

FDL 0.163 0.152 0.007

(3.00) *** (2.73) *** (0.06)

FDH 0.765 0.792 0.909

(3.71) *** (3.83) *** (2.90) ***

IV L 0.267 0.268 0.304

(2.44) ** (2.46) *** (1.87) *

IV H -0.135 -0.144 -0.179

(-1.99) ** (-2.11) ** (-2.21) **

OPL -0.251 -0.252 -0.124

(-3.50) *** (-3.51) *** (-0.97)

OPH 0.419 0.422 0.343

(8.67) *** (8.66) *** (5.82) ***
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In stark contrast to the absence of significance for risk factors, 13 out of 18 charac-

teristics are significant at conventional levels, and ten even pass the stricter hurdle

of having t-stats beyond three. In particular, we find that the stock characteristics

high-illiquidity ILH , low price-to-book value PBL (i.e. value stocks), positive mo-

mentum MOH , small market-capitalization SZL, distress FD, low asset growth

IV L, and high operating-profitability OPH carry significant positive character-

istic premiums. In contrast low-illiquidity ILL, high price-to-book value PBH

(i.e. growth stocks), negative momentum MOL, high return-volatility V OH , high

asset growth IV H and low operating-profitability OPL earn significant negative

characteristic premiums. Except for the positive risk premium related to financial

distress risk (see e.g. Campbell et al. (2008)), our findings are well in line with

findings of the earlier empirical asset pricing literature. Recall from above, that

we prefer to use univariate betas in the second stage estimation. However, when

using multivariate betas, our results are qualitatively identical, albeit even slightly

stronger as neither the momentum factor mom nor the size factor smb turn out

strongly significant. We report slope coefficient estimates from using multivariate

betas (only for the full model) as column (4) in Table 16 in Appendix C.

Results in Table 2 are based on the mean beta EIV correction by Pukthuanthong

et al. (2019), which is a simple and pragmatic approach. We check our results by

implementing the more sophisticated IV approach by Jegadeesh et al. (2019) and

report results in Table 16 in appendix C. We estimate univariate factor betas from

daily returns of disjunct sets of odd and even calendar months. We estimate the

factor betas using daily returns over a rolling window of 720-trading days, which

corresponds to the 36-month rolling window used by Jegadeesh et al. (2019).22

Overall, we find almost identical results as with the mean beta approach. The

only notable difference is that with the IV approach, also the smb factor turns

out insignificant, thereby even strengthening our findings.23 The reason for not

relying on the IV approach as our baseline specification is the fact that it tends

to produce an increasing number of extreme outliers in the second stage regres-

sion as the number of factors is augmented.24 With the caveat of outliers in the

22Note already, that in a later section (i.e. section D.1), we will estimate the Fama and MacBeth
(1973) regression with betas from monthly data instead of a daily frequency. Results remain
qualitatively unchanged.
23One could speculate that the fact that the mean beta approach produces a significant smb

factor could be due to deriving the mean beta from sorting on size. However, we were re-
running the analysis with mean betas from sorting on Price-Book ratios as well as on past price
performance and found almost identical results (results not reported, available on request).
24Jegadeesh et al. (2019) note in their footnote 17, that they drop monthly risk premia estimates

if they are larger than six standard deviation from the average raw return, which in their analysis
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second stage, the IV approach largely confirms our results. Finally, in line with

Jegadeesh et al. (2019) and Chordia et al. (2015), we contrast our findings with

results from OLS estimation. We report results in Table 16 in Appendix C, which

show that the EIV correction is not crucial and that even OLS results are close

to our overall finding. We find that smb looses significance, so only mom (with

t = −2.44) remains a relevant risk factor, while all the results from mean beta or

IV correction are virtually unchanged in the simple OLS estimation, with 14 out

of 18 characteristics as significant out of which 9 exhibit t-stats beyond 3.

Determining the significance of risk premia estimates for factors versus character-

istics is standard in the literature to establish the importance of the corresponding

explanatory variable. However, an arguably even cleaner test of the relative sig-

nificance of either candidates is to perform the expected return decomposition

according to Chordia et al. (2015), which quantifies the relative contribution of

the factor loadings (i.e. betas) and characteristics to the expected (i.e. explained)

stock return. We therefore determine the proportional cross-sectional variance

of factors and characteristics (VRbeta
t and VRchar

t ) according to equation (7) and

plot their time-variation in Figure 3 for the monthly values, as well as for the 1-

year (dashed) and 5-year (solid) moving average over the sample period 01/1975–

06/2016. Over the entire sample, the average fraction of expected return variation

that is explained by risk factors is 28.56%, while the corresponding fraction for

characteristics is 64.08%. Thus, on average characteristics explain the major share

of cross-sectional variation in expected returns. The graph shows substantial time

variation on a monthly frequency, but averaging over a rolling 1-year and 5-year

window reveals that this pattern appears to be robust over time. On the basis

of the 1-year MA, only two periods in the early 80s and 2000s display a close to

equal decomposition, while the 5-year MA shows only little time variation and a

consistently larger explanatory fraction of characteristics. This finding is impor-

tant in particular against the background of contributions which show that there

is vanishing evidence for anomalies after 2003. Green et al. (2017) find that in

particular for non-microcap stocks, evidence for characteristics-based predictabil-

ity drops sharply around 2003. When restricting our analysis to post-2003 data,

is the case for approximately 3% of the observations. In our specification with six risk factors
(and by using the same 6-σ criterion), we find that up to 40% of monthly factor premia estimates
would have to be excluded. (To be precise: The fraction of observations that are beyond six
standard deviations are 22.7% for mk, 19.9% for smb, 39.6% for hml, 42.8% for cma, 27.1% for
rmw, and 20.7% for mom.) It is hard to believe that monthly risk premia can jump by a factor
of 6, while at the same time it also appears inappropriate to drop such a substantial subset of
observations. Therefore, we consider the IV approach with a larger number of risk factors as
impractical.
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Figure 3: In this figure we plot the time series of the cross-sectional variation, which is explained
by factor-risk exposure (i.e. betas) and characteristics over time. As shown by Chordia et al.
(2015) due to the correlation between factor betas and characteristics the two ratios do not
necessarily have to add up to 1. The mean over the full sample period for the explanatory
power of characteristics is 64.08%, while the corresponding mean is 28.56% for the factor betas.
The dotted and the solid line respectively show the moving average of the factor/beta explained
component over a 12 month and 60 month rolling window.

we can confirm the decline in statistical significance of point estimates of return

contribution from characteristics.However, when looking at the variance decom-

position, we indeed see a drop in characteristics-induced variation in the interval

1998-2002, but which is only temporary. For the post-2003 sample (i.e. from

01/2003–06/2016), we find an average variance ratio of 65.50% for characteristics

and 29.70% for factors which is almost identical to the entire sample. Thus, we

find no evidence of a declining importance of characteristics from the perspective

of the variance decomposition.

C.2. Revealed Preferences From Institutional Portfolio Tilts

– Factors or Characteristics

In this section, we shift our focus on institutional demand as dependent variable.

We run the panel regression model of Equation (8), which attempts to identify if

tastes for characteristics or aversion to risk factors are first-order determinants of

institutional portfolio holdings. The dependent variable in the regression model

is the relative market tilt of institutional portfolio managers. Our results, which

are summarized in Table 3, show that institutional managers’ tilts for individual

stocks are strongly related to stocks characteristics. These results emerge robustly

from the univariate regressions (Columns 4 to 9), as well as in our regression model

that includes all characteristics simultaneously.
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Table 3: In this table we report the empirical estimation results for the institutional investors portfolio tilt panel regressions according to Equation (8): Ti = α0 +
∑F

f=1 θftβ̂if +∑J
j=1 θjtφij + ci + pt + εit. The dependent variable is the demand tilt, winsorized at the 97 % quantile. The explanatory variables include the univariate factor betas with respect to

the market, SMB, HML, CMA, RMW and momentum factor, estimated over a rolling window of 36 months and winsorized at the 1 % and 99 % quantile. Additionally, we include the
characteristic labels/indicator dummies, which identify whether a particular stock belongs to the top/bottom quantile according to the corresponding characteristic sort (see Section
B.3). The regression coefficients can be interpreted as the change in percentage points in the average stock tilt, when multiplied with 100. The regression includes firm fixed and time
fixed effects. Standard errors are estimated according to Driscoll and Kraay (1998). * denotes significant at 10%, ** denotes significant at 5%, *** denotes significant at 1%;

(1) Full Model (2) excl. IL (3) Char (4) IL (5) PB (6) MO (7) VO (8) BT (9) SZ (10) FD (11) IV (12) OP

const 0.557 0.558 0.558 0.569 0.597 0.610 0.606 0.603 0.567 0.555 0.601 0.608
(67.46) *** (70.60) *** (68.78) *** (108.13) *** (162.40) *** (147.37) *** (156.51) *** (154.10) *** (84.57) *** (100.63) *** (160.84) *** (151.72) ***

mkt 0.002 0.003
(1.24) (1.58)

smb 0.002 0.003
(2.00) ** (2.16) **

hml 0.001 0.001
(1.09) (0.93)

cma 0.001 0.001
(1.26) (1.12)

rmw 0.006 0.006
(8.63) *** (8.33) ***

mom 0.004 0.004
(2.86) *** (3.21) ***

ILL 0.098 0.097 0.176
(16.82) *** (16.95) *** (20.19) ***

ILH -0.059 -0.058 -0.145
(-11.66) *** (-11.43) *** (-16.25) ***

PBL -0.016 -0.021 -0.016 -0.078
(-4.38) *** (-5.75) *** (-4.43) *** (-19.66) ***

PBH 0.001 0.005 0.001 0.052
(0.21) (0.95) (0.23) (8.35) ***

MOL -0.024 -0.022 -0.024 -0.041
(-12.35) *** (-12.04) *** (-11.87) *** (-17.16) ***
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Table continued:

(1) Full Model (2) excl. IL (3) Char (4) IL (5) PB (6) MO (7) VO (8) BT (9) SZ (10) FD (11) IV (12) OP

MOH 0.004 0.005 0.004 0.008
(1.25) (1.63) (1.20) (2.17) ***

V OL 0.013 0.014 0.013 0.036
(2.83) *** (3.40) *** (2.89) *** (8.01) ***

V OH -0.022 -0.030 -0.024 -0.093
(-5.28) *** (-6.86) *** (-5.32) *** (-19.87) ***

BTL -0.008 -0.007 -0.006 -0.010
(-3.98) *** (-3.72) *** (-2.37) *** (-3.19) ***

BTH 0.005 0.006 0.002 -0.003
(1.76) * (2.08) ** (0.55) (-0.78)

SZL -0.130 -0.156 -0.130 -0.192
(-22.60) *** (-19.01) *** (-22.35) *** (-20.44) ***

SZH 0.062 0.107 0.063 0.165
(9.72) *** (14.17) *** (9.78) *** (17.18) ***

FDL 0.090 0.101 0.091 0.150
(13.26) *** (14.69) *** (13.56) *** (19.34) ***

FDH -0.063 -0.071 -0.064 -0.157
(-10.73) *** (-11.34) *** (-10.67) *** (-18.05) ***

IV L -0.016 -0.018 -0.017 -0.058
(-9.44) *** (-10.49) *** (-9.61) *** (-21.86) ***

IV H 0.011 0.015 0.011 0.049
(5.67) *** (7.32) *** (5.92) *** (14.33) ***

OPL -0.030 -0.033 -0.030 -0.070
(-11.61) *** (-12.60) *** (-11.61) *** (-20.29) ***

OPH -0.004 -0.001 -0.003 0.029
(-1.61) (-0.57) (-1.35) (9.40) ***

Within R2 17.54 % 16.51 % 17.38 % 12.20 % 7.92 % 6.69 % 6.97 % 6.03 % 13.33 % 11.01 % 6.98 % 7.02 %
p-value Hausmann 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 389,971 389,971 389,971 389,971 389,971 389,971 389,971 389,971 389,971 389,971 389,971 389,971
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Reflecting the results from the previous section, we find that from the set of risk

factors, smb and mom are again significant at conventional levels. Additionally,

rmw turns out as strongly significant for portfolio tilts. However, when imposing

the t-stat hurdle of 3, only rmw survives. Thus, only one out of the six common

risk factors can robustly explain portfolio tilts. Results for the set of characteristics

are markedly different. 13 out of 18 characteristics comfortably exceed a t-value of

3, and 15 out of 18 are significant at conventional levels. Results are qualitatively

identical, albeit even slightly stronger if we exclude the illiquidity characteristics

due to the results from the variance inflation factor (see second column). When

estimating univariate relationships, we find substantially stronger coefficients, re-

flecting the fact that individual characteristics can hardly be isolated. To facilitate

the qualitative interpretation of the regression results, we illustrate the estimated

coefficients (from column 1 in Table 3) in Figure 4 as barcharts which allows for

the immediate visual assessment in which characteristics institutional portfolios

are over- (positive bars) or underweighted (negative bars). Note that the regres-

sion coefficients (when multiplied with 100) on the characteristics dummies can

be interpreted as the percentage change in the average stock tilt in case that a

particular stock carries the corresponding label.

Figure 4: In this figure, we show the estimated coefficients from column 1 in Table 3 as barchart
plot. Positive (negative) bars indicate over- (under-)weighted tilts. Regression coefficients (when
multiplied with 100) on the characteristics dummies can be interpreted as the percentage change
in the average stock tilt in case that a particular stock carries the corresponding label. Statistical
significance is indicated as stars above/below bars.

Across the 18 high and low characteristic labels, the strongest coefficients (and

t-stats) can be found for illiquidity, size and distress. Investors are strongly tilted

towards liquid, large and financially-healthy stocks. ILL, SZH , and FDL have

coefficients of 0.098, 0.062, and 0.09 respectively, indicating that stock tilts are
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roughly up to 10% larger when stocks carry the corresponding characteristic. In

contrast, significant and substantial negative tilts (or underweighting) can be found

for stocks that are illiquid (ILH , with coefficient -0.059), are prone to financial dis-

tress (FDH , -0.063), and display low operating profitability (OPL, -0.03). Further

statistically significant negative tilts are obtained for stocks with low valuation

ratios (PBL, -0.016), low price continuation (MOL, -0.024), high volatility (V O,

-0.022), and low asset growth (IV L, -0.016) although coefficients are economically

smaller. Taken together, the results reveal the pervasive pattern that institutional

investors tilt their portfolios towards stock characteristics which can be considered

as good aspects and tilt away from allegedly weak stock characteristics.

In contrast to the return regression, we employ panel regressions which allows

the inclusion of fixed effects. However, as robustness check, we estimate the tilt

regression also within the Fama and MacBeth (1973) approach, i.e. according to

the model in (9) to make it directly comparable to the return regression. Due to

the data availability of 13(f) filings, the tilt regression is conducted on a quarterly

frequency. Therefore, we re-run the above return regression also on a quarterly

frequency (and with the mean beta EIV correction). Results are summarized in

Table 17 in Appendix D. Results for quarterly return regressions (as reported in

row (3) of Table 17) are qualitatively identical, albeit at lower significance levels

which is likely due to the lower number of observations. Within the Fama and

MacBeth (1973) tilt regressions, we find overall a substantially higher significance

level for all variables (as compared to panel regression). It implies that we do

find that characteristics as well as risk factors turn out to be significant with large

t-values. The size characteristic e.g. carries a t-stat of -86.2, the market factor

mkt is significant with t = 16.19. However, these high significance levels can be

attributed to the lack of firm fixed effects. Once we remove firm fixed effects from

the panel regression (see row (2) in Table 17), almost identical results to the Fama

and MacBeth (1973) approach are obtained, which is plausible, as the Fama and

MacBeth (1973) method is in theory close to a panel regression without firm fixed

effects.25 We interpret the results as strong support to rely on results from panel

regression with fixed effects as reported in our main Table 3.

Our results are related to and well in line with findings of Edelen et al. (2016), who

show that institutional investors seem to trade contrary to anomaly prescriptions

in the sense of rather buying overvalued stocks that are part of the short leg.

25See e.g. Cochrane (2005).
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Similar to Edelen et al. (2016), we observe that our demand tilts turn out to be

unrelated to the investment suggestions by the academic anomaly literature, such

as the well-established finding that high-beta stocks and high asset growth stocks

earn below average returns. Further empirical results suggest that sophisticated

investors should exploit the size and value premium by investing into small-cap

and value stocks, as they historically provided above average returns. As argued

by Edelen et al. (2016) high price-to-book value, high asset growth and large

market capitalization create an appearance of a good investment, despite that these

stocks empirically provide below average returns. Our findings strongly suggest

that institutional investors pay attention to stock characteristics, regardless of the

empirically observed return patterns associated to these characteristics, and that

they use stock characteristics as tangible identifiers to select stocks and construct

their portfolios. While a full analysis of the rationale behind this observed behavior

is beyond the scope of this paper, a potential reason may be found in information

processing arguments and agency relationships. Stock characteristics are salient

and readily available pieces of information which can be easily used to classify

stocks into strong and weak investments. Such an uncontroversial classification can

in turn be used as legitimation against investors or superiors to justify investment

decisions.

Our empirical approach is distinct to Edelen et al. (2016) as it allows to address

the marginal tilt effects within a multivariate regression setting.26 Thus, in our

full regression model we additionally control for the past factor risk exposure of

individual stocks. Therefore we compute univariate factor betas for mkt, smb,

hml, cma, rmw and the momentum factor mom over a rolling window of 36

months, winsorized at the 1% and 99% quantile to remove outliers, and include

these betas as additional regressors. Thereby we check whether the relation of

demand tilts to characteristics is orthogonal to controlling for past factor risk

exposure. This regression framework allows to address whether investors have

tastes for known characteristics besides aversion with respect to risk factors. We

argue that institutional investors reveal their preferences for factor risk exposure

and stock characteristics through their portfolio holdings. With this regression we

also address the challenge raised by Pastor et al. (2020), who state that from an

economic perspective it is necessary to address whether any observed characteristic

excess return relation is related to fundamental tastes or (latent/unobserved) factor

risks.

26Applying a multivariate regression approach with respect to demand tilts addresses the general
call for multivariate methods in empirical asset pricing, as e.g. emphasized by Cochrane (2005)
and Green et al. (2017).
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The results from our full regression model show that institutional portfolio holdings

are significantly related to stock characteristics, despite controlling for factor risk

exposure. The findings are closely comparable to the univariate regressions and

the regression without the factor beta controls. This finding can be interpreted in

the sense that institutional investors appear to have tastes/preferences for certain

stock characteristics, which is orthogonal to the stocks’ factor risk exposure.

C.3. Linking Institutional Tilts and Expected Returns

The previous two sections have shown that excess returns as well as institutional

investors’ portfolio tilts are significantly related to characteristics, which offers

the tentative interpretation that pervasive patterns in investors’ demand drives

the cross-section of returns. We analyse this alleged link more rigorously in this

section by regressing excess returns on portfolio tilts via the panel regression model

from Equation (10). Results are reported in Table 4.

Table 4: In this table we report the results according to the panel regression model from
Equation (10): rexit = α0+β×Ti,t−1+ci+pt+εi,t. The dependent variable is the quarterly excess
stock return. The explanatory variable is the institutional tilt of the prior quarter computed
according to 3. Standard errors are estimated according to Driscoll and Kraay (1998). * denotes
significant at 10%, ** denotes significant at 5%, *** denotes significant at 1%, whereby p-values
are rounded to two digits.

Dependent variable
rexit

Constant 0.095
(8.27) ***

Ti,t−1 -0.101
(-6.37) ***

Within-R2 13.18 %
Observations 381,655

The coefficient on lagged tilts turns out negative with a t-stat of more than six.

Thus, it is statistically highly significant and the economic magnitude is large.

A stock in which institutional investors are overweighted by 1%-point is associ-

ated with a next quarters’ return that is lower by 0.101%-points. To assess the

economic magnitude, recall from the tilt regression (i.e. equation (8), Table 3)

that e.g. the high liquidity characteristic (ILL) carries a coefficient of 0.098 (in

the multivariate model), which means that the tilt in very liquid stocks is higher

by 9.8%-points. Thus, it translates to a subsequent return which is lower by

1.77%-points per quarter, or by 7.11% annually, which is economically significant.
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Therefore we conclude that institutional demand tilts have a strong impact on

asset prices and consecutive stock returns. The negative sign indicates that insti-

tutions are on average tilted towards the wrong, i.e. underperforming side of ex

ante expected stock returns. This finding is actually consistent to the results in

Edelen et al. (2016) who document that over a one year horizon, stock returns

are negatively related to institutional investor demand, which they interpret as

evidence against the sophisticated investor hypothesis.27 Our results support the

interpretation that institutional investors are tilting their portfolio to a number

of favorably perceived stock characteristics and that they are willing to accept a

lower than average return for holding those stocks that fit their preferences.

Although institutional investors are obviously an important and sizable group of

investors, our analysis cannot take into account demand tilts of retail investors.

Still, theoretical arguments as discussed in e.g. Pastor et al. (2020) show, that even

if only a subgroup of investors has preferences for stock characteristics, then this

imbalance is sufficient to induce the manifestation of a relationship between av-

erage returns and stock characteristics. Therefore, independent of the underlying

rationale, our results show that institutional demand tilts turn out to be strong

enough to distort asset prices, which leads support to our proposed transmission

channel.

We take our analysis one step further by decomposing returns as well as tilts

into characteristic and factor-risk induced components. The previous result has

documented that the overall portfolio tilt is strongly associated to price changes.

If it is true that characteristics are predominantly important for portfolio tilts

and that this preference-induced demand translates to return patterns, then we

should expect to see this relation in particular from the characteristics-induced

component of the portfolio tilts. Thus, in order to decompose institutional stock

tilts into characteristic and factor-risk related components, we first run quarterly

cross-sectional Fama and MacBeth (1973) regressions of individual stock tilts on

27Note that Edelen et al. (2016) proxy institutional demand by the changes in the aggregate
number of institutional investors. We consider our portfolio tilt measure to be a superior proxy
for demand as it accounts for the position size of the institutional investors’ portfolio. However,
we run a robustness check, where we regress quarterly returns on the lagged change in the
number of institutional stock owners. Comparable to Edelen et al. (2016) we find that there is a
horizon effect of changes in the number of institutional stock owners on stock returns, where the
effect becomes significantly negative when expanding the lag between changes in the number of
institutional stock owners and future returns from one quarter to one year. Indeed this horizon
effect is not observable when using the tilt variable. It therefore appears that this documented
horizon effect of Edelen et al. (2016) is special to using the number of institutional stock owners
as an explanatory variable. The results for this robustness check can be provided upon request.
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factor betas and stock/firm characteristics as in (9). Similarly to the variance

decomposition, we then define the respective tilt part that is explained by factors

and characteristics for each individual stock i in each quarter t as:

T̂ betai,t =
F∑
f=1

θ̂f,tβ̂i,f,t−1, T̂ chari,t =
J∑
j=1

θ̂j,tφi,j,t−1 ∀ t = 1, ..., T. (12)

For the lagged beta estimate of stock i, we use the EIV correction according to the

mean beta approach of Pukthuanthong et al. (2019) as well as the IV estimator

from Jegadeesh et al. (2019). Betas from the IV approach are estimated from

disjunct sets of odd and even months over a 720-day rolling estimation window.

We include the factor betas for the five Fama and French (2015) factors augmented

with the Carhart (1997) momentum factor.28 Similar to the Fama and MacBeth

(1973) return regressions, we compute time-series averages of the slope coefficients

and report them in Column (1) of Table 17 of Appendix D.

Since coefficients are determined within an EIV-corrected regression, they will not

suffer from a systematic bias.29 Therefore we use fitted tilt parts T̂i,t as explanatory

variables in the next step of a predictive panel regression of future quarterly stock

returns on the tilt parts explained by factors and characteristics.30 This panel

regression includes firm fixed effects ci and time-fixed effects pt:
31

rexi,t = α + γbeta T̂
beta
i,t−1 + γchar T̂

char
i,t−1 + ci + pt + εi,t (13)

We combine the decomposition of tilts as in (12) with the return decomposition

28For the cross-sectional regression of quarter t we use the factor betas and stock/firm charac-
teristics that are observable at the end of the preceding quarter. This means that for example
for the fourth quarter we use the factor betas and characteristics that are observable at the end
of September.
29To check for potential biases, we conducted a robustness check where we run a Monte Carlo

Simulation with randomly drawn tilts from the variance-covariance matrix of the estimates from
Equation (9). The robustness check confirms our results and indicates that a fitted tilts do not
introduce an EIV problem.
30We only include stocks in the sample that have a full trading record within quarter t. Therefore

stocks that delist e.g. in February are not included in the first quarter, but are included in the
fourth quarter of the preceding year.
31We include firm fixed effects to control for unobserved heterogeneity. The Hausman (1978)

-type specification test proposed by Hoechle et al. (2020) strongly rejects the null-hypothesis
that the random effects assumption holds. Therefore we decide to include firm-fixed effects.
We include time-fixed effects in the regression as they allow to control for market-wide return
fluctuations that occur within a specific quarter (i.e. movements of the market risk factor).
By controlling for time-fixed effects we can estimate the marginal effects of institutional fac-
tor/characteristic tilts on future excess returns. Neglecting time-fixed effects would lead to
biased estimates and standard errors.
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already introduced in Equation (6),32 which we use in running a panel regression

of the factor/characteristic return part on the factor tilt component and the char-

acteristic tilt component. Again we include firm fixed effects ci and time-fixed

effects pt:

r̂ex,betait = α + γbeta T̂
beta
i,t−1 + γchar T̂

char
i,t−1 + ci + pt + εi,t (14)

r̂ex,charit = α + γbeta T̂
beta
i,t−1 + γchar T̂

char
i,t−1 + ci + pt + εi,t (15)

We report results in Table 5.

Table 5: In Column 1 we report the results of the panel regression according to Equation
(13). In Columns 2 and 3 we report the estimation results of the panel regression according to
Equation (14). Standard errors are estimated according to Driscoll and Kraay (1998). * denotes
significant at 10%, ** denotes significant at 5%, *** denotes significant at 1%, whereby p-values
are rounded to two digits.

(1) (2) (3)
Dependent variable

rexit r̂ex,betait r̂ex,charit

constant 0.044 0.014 -0.009
(3.95) *** (1.73) * (-1.96) *

T̂ beta
i,t−1 0.013 0.087 -0.002

(0.15) (1.41) (-0.09)

T̂ char
i,t−1 -0.165 -0.009 -0.038

(-7.47) *** (-1.43) (-2.97) ***

Time-Fixed Effects Yes Yes Yes
Firm-Fixed Effects Yes Yes Yes

Within-R2 17,06% 55.46% 13.17 %
Observations 389,992 389,992 389,992

Column (1) of Table (5) reports the estimation result for the regression from

(quarterly) excess returns on the factor- and characteristic-induced tilt component.

We find that only the characteristic-induced part is significant. In comparison to

the aggregate regression, the magnitude of the coefficient as well as the t-stat are

larger which leads strong support to our conjecture that characteristics-induced

demand is pricing-relevant but not demand due to risk factor aversion. Column

32Note, that contrary to the return decomposition in Section C.1, we use quarterly frequency here
since the tilt measure is only available on a quarterly basis. To check if return regression results
change with the lower frequency, we report the time-series averages of the estimated quarterly
coefficients in Column (3) of Table 17 in Appendix D. Overall the results are comparable to the
monthly regression results presented in Table 2.
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(2) reports results when we regress only the risk factor-related return component

r̂ex,betait on the tilt decomposition. Neither tilt component is significant. Vice

versa, when regressing the characteristics-related return part r̂ex,charit on the tilt

decomposition (Column 3), we find the same pattern, namely no significance for the

risk factor-induced tilt, while the characteristics-induced tilt is significant again.

As robustness test, we check if the EIV correction influences results. We run the

same analysis by implementing the IV EIV correction of Jegadeesh et al. (2019)

and report results in Table 18 in Appendix E. We find almost identical results.

Taken together, these results appear as strong support for the interpretation that

the preferences with respect to characteristics are revealed in portfolio tilts of

institutional investors and that these preferences are pricing-relevant in the cross-

section of equity returns.

D. Robustness Checks

D.1. Latent Factor Risks

An important concern is the possibility that characteristics turn out strongly sig-

nificant not because they are generic explanatory variables but because they are

proxies for some underlying latent risk factor. Although we control for six well-

established risk factors, it is still conceivable that yet unidentified factors are driv-

ing results. Kelly et al. (2019) is a recent contributions which argues that a large

number of characteristics should not be interpreted as anomalies but rather as

dynamic latent factor loadings. Kelly et al. (2019) derive latent risk factors from

the cross-section of returns through an augmented variant of principal components

analysis. They show that it is sufficient to consider a low-dimension model with

only four latent factors, which they use as their baseline model. It is thus a natural

robustness check to test if our results survive the inclusion of the latent risk factors

as identified by Kelly et al. (2019). We obtain the latent risk factor data from the

internet appendix of Kelly et al. (2019) for the period 1975 to July 2014. We in-

clude them in our Fama and MacBeth (1973) regression framework as substitutes

for the six risk factors.

A direct comparison to our previous results is complicated by the fact that the

latent factor data has a monthly frequency and ends in 2014. To overcome this

problem, we first re-run the first stage regression by computing betas from monthly

observations for the five Fama and French (2015) and the Carhart (1997) momen-

tum factor over a rolling window of 48 months. In line with the preceding section,
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we use the mean beta approach of Pukthuanthong et al. (2019) and the IV method

by Jegadeesh et al. (2019) to accommodate the EIV problem. We report results

from the mean beta correction in Table 6 (and include the results from the IV

method as Table 19 in Appendix F). In both tables, column (1) reports slope

coefficients form our base specification as in Section C.2 (sample period 01/1975–

06/2016) but with monthly betas. Column (2) repeats the same analysis as in

column (1) but only for the restricted sample period up to 2014 to be directly

comparable to the specification in column (3) which replaces the six risk factors

by the four latent Kelly et al. (2019) factors F1–F4.

Table 6: In this table we report the empirical estimation results for the Fama and MacBeth
(1973) regressions according to Equation (5): rexit = γ0t +

∑H
h=1 γh,tβ̂i,h,t−1 +

∑J
j=1 γj,tφi,j,t−1 +

εi,t ∀ t = 1, ..., T . The dependent variable is the monthly excess market return of individual
stocks in percent. The explanatory variables are the estimated historical factor betas and the
characteristic labels/indicator dummies. The factor betas are estimated with respect to the
five Fama and French (2015) factors augmented with the Carhart (1997) momentum factor.
Additionally, we also use the four latent risk factors provided by Kelly et al. (2019) (F1, F2,
F3, F4). As described in Section (B.2) we apply the EIV correction from Pukthuanthong et al.
(2019). In this approach stocks are sort into deciles of market-capitalistion and factor betas.
The individual factor beta is then replaced by the average beta of the corresponding size-beta
category. In contrast to the results of Table ?? the factor betas are estimated from monthly
(not daily) returns over a 48-month rolling window, as the latent factors from Kelly et al. (2019)
are only available at quarterly frequency. The reported estimates in the table are the time-
series averages of the monthly slope-coefficient estimates. The sample period is January 1975 to
July 2014. For comparison reasons column FF Six Factor 2016 provides results for the period
January 1975 to May 2016. * denotes significant at 10%, ** denotes significant at 5%, ***
denotes significant at 1%;

Dependent variable rexit

(1) (2) (3)

6-Factor-2016 6-Factor-2014 Latent-4-Factor

const 0.837 0.823 const 0.812

(4.01) *** (3.83) *** (3.72) ***

mkt -0.096 0.051 F1 0.378

(-1.27) (-0.66) (2.50) **

smb 0.068 0.069 F2 0.073

(1.47) (1.44) (0.477)

hml -0.007 0.011 F3 0.022

(-0.13) (0.203) (0.39)

cma 0.017 0.080 F4 0.013

(0.53) (0.24) (0.27)

rmw 0.006 0.017

(0.17) (0.45)

mom -0.134 -0.129

(-2.11) ** (-1.95) *

ILL -0.064 -0.063 ILL -0.070

(-0.95) (-0.92) (-1.04)

ILH 0.246 0.242 ILH 0.238

(2.65) *** (2.53) ** (2.47) **

PBL 0.181 0.195 PBL 0.187
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Table 6 continued:

(1) (2) (3)

(2.88) *** (3.07) *** (2.92) ***

PBH -0.242 -0.262 PBH -0.259

(-3.57) *** (-3.78) *** (-3.74) ***

MOL -0.115 -0.001 MOL -0.096

(-1.07) (-0.92) (-0.89)

MOH 0.238 0.256 MOH 0.242

(3.04) *** (3.14) *** (3.03) ***

V OL -0.017 -0.051 V OL -0.044

(-0.23) (-0.67) (-0.57)

V OH -0.333 -0.322 V OH -0.335

(-1.92) * (-1.84) * (-1.95) *

BTL -0.058 -0.049 BTL -0.046

(-1.06) (-0.87) (-0.83)

BTH -0.078 -0.079 BTH -0.085

(-1.03) (-1.03) (-1.10)

SZL 0.414 0.463 SZL 0.463

(4.00) *** (4.40) *** (4.57) ***

SZH -0.093 -0.097 SZH -0.103

(-1.30) (-1.31) (-1.43)

FDL 0.063 0.055 FDL 0.057

(1.18) (0.99) (1.02)

FDH 0.599 0.668 FDH 0.674

(2.78) *** (3.01) *** (3.03) ***

IV L 0.105 0.083 IV L 0.066

(0.78) (0.59) (0.47)

IV H -0.164 -0.159 IV H -0.164

(-2.13) ** (-2.01) ** (-2.05) **

OPL -0.293 -0.244 OPL -0.240

(-3.81) *** (-3.10) *** (-3.15) ***

OPH 0.363 0.385 OPH 0.379

(7.77) *** (8.14) *** (8.02) ***

Observations 498 474 474

First, by comparing results form column (1) with the previous results in Table

2, we note that changing the data frequency (from daily to monthly beta calcu-

lation) yields almost identical results among characteristics, while the size factor

smb looses its significance. Shortening the sample period to 2014 has almost no

impact on results. Second and more importantly, column (3) shows that replacing

the six (predetermined) risk factors by the latent risk factors F1–F4 has almost

no impact on the results. Not only do characteristics still show high significance,

but it is also the same set of characteristics with the same magnitude in the slope

coefficients which explain excess returns. Third, when implementing the EIV cor-

rection according to the IV approach (Table 19 in Appendix F), we again find

almost identical results.33 We interpret the results as strong evidence that char-

33With IV EIV correction, even mom is no longer significant, while cma and rmw carry weak
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acteristic return premiums are not attributable to latent/unobserved factor risks.

Results in column (3) further show that only F1, i.e. the first out of the four

Kelly et al. (2019) factors carries a significant (t-stat of 2.5) and positive return

premium. According to the factor identification protocol of Pukthuanthong et al.

(2019), a true pervasive risk factor should be related to the covariance matrix of

returns and have an associated risk premium. The latent risk factors F2 to F4

do not meet this requirement and would not be classified as true pervasive risk

factors in this sense.

By construction, latent risk factors per se have no direct economic interpretation.

To investigate their meaning, we report the correlation matrix between the latent

risk factors of Kelly et al. (2019) and the six FFC factors in Table (7). We

Table 7: In this table we report the correlation matrix of the five Fama and French (2015)
factors (mkt, smb, hml, rmw, cma, mom), the Carhart (1997) momentum factor and the four
latent risk factors of Kelly et al. (2019) (F1, F2, F3, F4).

Pairwise Correlations

F1 F2 F3 F4

mkt 0.070 0.839 0.350 -0.071

smb 0.127 0.654 -0.271 0.145

hml 0.195 -0.409 0.317 0.453

cma 0.056 -0.413 0.057 0.409

rmw -0.265 -0.477 0.373 0.160

mom -0.692 0.028 -0.317 0.255

observe that the first latent risk factor has a strong negative correlation with the

momentum factor and therefore can be interpreted as an inverse variant of the

momentum factor. Hence, the finding of a positive risk premium documented for

the first latent risk factor F1 is consistent with the negative risk premium that

we find for the momentum factor mom. The second latent risk factor F2 strongly

correlates with the market factor mkt. The finding that the second latent risk fac-

tor does not have a significant risk premium lines up with the insignificant factor

premiums that we find for the market risk. With respect to the relative contri-

bution of factor loadings and characteristics to the overall variation in average

returns we find that in the model including the latent risk factors, characteristics

still explain the largest fraction of the overall variation with 74.52 %, while factors

only explain 17.55 %. Despite that the latent risk factors of Kelly et al. (2019)

are constructed from an advanced version of principal components analysis and

significance (t-values of 1.66 and 1.57 respectively).
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are therefore theoretically better adapted to the cross section of returns compared

to the factors of Fama and French (2015) and Carhart (1997), characteristics still

explain the major fraction of the overall variation in average returns.

D.2. Risk Proxy Hypothesis

A closely related concern is the possibility that the significance of characteristics

is derived from being a better proxy for true future betas than the estimated

past betas themselves, which is labelled the ’risk proxy hypothesis’. Under this

hypothesis, characteristics pick up explanatory power not because of capturing

(yet) unidentified factors, but because of being a better empirical proxy for the

future realization of the known factors. Although mitigated by the correction

of the EIV bias, betas estimated from past data may still contain measurement

error which makes them poorer predictors of future betas than characteristics.

Jegadeesh et al. (2019) address the risk proxy from a rigorous perspective and

derive an explicit estimator (labelled as IV mean-estimator) under the assumption

that characteristics anticipate innovations in beta.34 Essentially, their IV mean-

estimator uses characteristics as instruments in the first-step regression and is

based on time-series averages of returns as well as characteristics. We implement

their approach to check the risk proxy hypothesis in our analysis, and report results

in Table 8.35

As in Jegadeesh et al. (2019), we use Hansen-Hodrick standard errors with 12 lags

to account for the overlapping data structure. We use the 3-factor model only, as

the IV approach tends to produce a too large number of outliers as discussed in

footnote 24. The results show very strong similarity with our base results. As risk

factors, we only find smb to be significant (but not passing t = 3), while we have

14 out of 18 strongly significant characteristics. Thus, after controlling for the risk

proxy hypothesis in the sense of the IV mean-estimator of Jegadeesh et al. (2019),

we still find strong support for the generic influence of characteristics.

The strong robustness of our results to the risk proxy concern can, at least partially,

be attributed to the fact that our characteristic variables are dummy variables that

are defined from an already extended period of time. Thus, the time-averaging in

the IV mean-estimator approach does not substantially alter their impact.

34See Jegadeesh et al. (2019), Section 5.1, in particular Proposition 2, p. 289.
35As mentioned earlier, the IV approach suffers from a strongly increasing number of outliers

in the monthly slope coefficient estimates in particular when using an increasing number of risk
factors. Therefore, we restrict our analysis to the three FF risk factors mkt, smb, and hml.
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Table 8: In this table we report the test of the risk-proxy hypothesis according to Jegadeesh
et al. (2019). The dependent variable is the average return over month t to month t + 11 in
percent. The explanatory variables include separate betas for odd and even calendar months
and the characteristic labels/indicator dummies. We run a two stage least squares regression
with separate betas for odd and even calendar months. Characteristics and odd/even month
betas serve as instrumental variables for even/odd month regressor betas. Standard errors are
estimated according to Hansen-Hodrick with 12 lags. * denotes significant at 10%, ** denotes
significant at 5%, *** denotes significant at 1%;

Dependent variable rexit

const 0.634 (3.69)***

mkt -0.299 (-1.08)

smb 0.432 (2.41)**

hml 0.053 (0.46)

ILL -0.074 (-5.89)***

ILH 0.322 (4.05)***

PBL 0.221 (2.90)***

PBH -0.345 (-5.62)***

MOL -0.065 (-0.85)

MOH 0.133 (2.44)**

V OL -0.061 (-2.14)**

V OH -0.068 (-0.81)

BTL -0.027 (-0.74)

BTH -0.057 (-2.02)**

SZL 0.470 (3.09)***

SZH 0.181 (2.19)**

FDL 0.116 (1.78)*

FDH 1.123 (5.70)***

IV L 0.390 (3.41)***

IV H -0.403 (-4.94)***

OPL -0.126 (-2.50)***

OPH 0.238 (4.24)***
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The risk proxy hypothesis can also be tackled from the perspective of allowing

characteristics to be conditioning variables for factor loadings, such as in Harvey

and Liu (2021) and Hoechle et al. (2020). Although their perspective is on time-

varying betas, this approach is also suitable to test the concern if the significance of

characteristics is completely absorbed into the interaction term with betas. Thus,

we implement the GPS regression model according to Hoechle et al. (2020), which

can be summarizes as:

rexi,t = (zi,t−1 ⊗ xt)θ + ci + vi,t. (16)

The vector zi,t = [1 z2,i,t ... zM,i,t] contains a constant and firm characteristics

zm,i,t(m = 2, ...,M). In our case these firm characteristics correspond to φ. The

second vector xt = [1 x1,t ... xK,t] consists of a constant and a set of risk factors

xk,t(k = 1, ..., K), which vary over time, but not across firms, which in our im-

plementation corresponds to the six risk factors above. Through the Kronecker

product all possible multiplicative combinations of the vectors z and x enter the

regression, thus the regression model consists of M×(K+1) explanatory variables.

Vector θ contains the coefficient estimates. Firm fixed effects are captured by ci

with E(ci) = 0. The strictly exogenous error term is denoted by vi,t.
36

By construction, the panel approach is different from cross-sectional regressions in

estimating factor loadings instead of determining the set of variables which carry

a risk premium. Still, we can focus on the fact if characteristics turn out to yield

an independent contribution to mispricing, i.e. if characteristics themselves also

seem to have incremental power in explaining returns even after allowing them to

conditioning betas. We report results from the panel regression model in Table 20

in Appendix G. The first column reports contributions from characteristics to the

total alpha, while columns 2–7 report contributions to the risk-factor loadings in-

dicated on the top of the column. While generally speaking, a substantial number

of interaction terms are strongly significant (and therefore also support the finding

of time-varying loadings, as emphasized e.g. by Harvey and Liu (2021)), the more

interesting finding for our purposes is the fact that 11 out of 18 characteristics

36Regression model (16) can be estimated with pooled OLS (without firm-fixed effects ci) or with
firm fixed effects. Hoechle et al. (2020) show that by estimating the regression model with pooled
OLS, it is possible to exactly replicate portfolio alphas and betas from the standard portfolio
sorts approach. As pooled OLS is only consistent if the random effects (RE) assumption holds,
it follows that the standard portfolio sorts implicitly rests on the RE assumption. In order to
address whether the RE assumption is likely to hold empirically, Hoechle et al. (2020) provide
a specification test, which is similar to Hausman (1978). The null hypothesis of this Hausman
(1978) type specification test is that the random effects assumption holds. If the null-hypothesis
has to be rejected, this suggests that the GPS model should be estimated including firm fixed
effects.
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exhibit a statistically and economically substantial contribution to Jensen-alpha.

We interpret this finding as strong evidence that although stock characteristics can

condition factor loadings, they are still associated with a substantial contribution

to mispricing. In this sense, the evidence is consistent with the main findings of

the previous sections.

D.3. Limits to Arbitrage

The findings of our return and tilt regressions in the previous sections strongly

suggest that return premiums related to ex-ante known stock and firm character-

istics exist and that they are driven by institutional investors portfolio preferences.

This result immediately faces the usual concern, why such apparent ’anomalies’

are not arbitraged away. Among many other authors, Kozak et al. (2018) argue

that contrary to sentiment-investors, arbitrageurs are able to use leverage and

short positions to neutralized near-arbitrage opportunities, from which they con-

clude that taste-based demand distortions should have a limited pricing impact.

This section provides three arguments why it appears unlikely that our results

can easily be arbitraged away. First, univariate risk premia are difficult to isolate.

Second, squared Sharpe ratios are not excessive. And third, portfolio tilts behind

characteristic premia are highly persistent over time.

A first argument why these characteristic related return premiums are not ar-

bitraged away is that the return of each individual stock is a multidimensional

conglomerate of several factor and characteristic premiums. In order to isolate an

individual characteristic-related return premium it is necessary to hedge out mul-

tiple risk factors and stock characteristics simultaneously. Arguably the number

of stocks that can be used to build up a hedge portfolio becomes very small when

sorting stocks according to multiple stock characteristics. Furthermore, since we

define dichotomous characteristics labels (i.e. high vs. low quantiles) that will carry

opposite risk premia (such as in the case of PB and OP where PBL and OPH

carry positive premia, while PBH and OPL carry negative premia), it would be

impossible to simultaneously go long and short in the same set of stocks to exploit

the difference.

Thus, individual slope coefficients are not readily interpretable as return premia

which can easily be exploited by a practical trading strategy. Instead, the evidence

should better be understood as strong evidence that the cross-section of returns

is strongly related to tastes for certain characteristics rather than risk aversion.
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Therefore we argue that arbitrage focused on one particular characteristic premium

is practically limited due to the large number of characteristics that influence the

overall stock return.

Second, even under the unlikely assumption that individual characteristic premia

were investable, it can shown that these premia are certainly not constant, but

exhibit considerable time-series volatility. Already Fama (1976) pointed out that

the estimated slope coefficients from the monthly Fama and MacBeth (1973) re-

gressions can be interpreted as portfolio returns,37 for which Sharpe ratios are

a meaningful risk-return metric. Since it can be shown that the squared Sharpe

(SR2) ratio is related to an upper bound on the variance of the stochastic discount

factor, Ross (1976) suggested to use two times the SR2 of the market portfolio

as an upper bound for the absence of near-arbitrage opportunities. This sugges-

tion is taken up in Kozak et al. (2018) to identify arbitrage opportunities and we

follow their line of reasoning to calculate the SR2 for our characteristic premia.

Results are reported in Table (9) for annualized SR2 of the monthly factor and

characteristic return contributions and the SR2 of the excess market return.

Table 9: In this table we report the monthly squared Sharpe-Ratios (column SR2) of the time
series of the estimated return premiums from Table ??. Additionally, we report the propor-
tional squared Sharpe-Ratios of the characteristic premia relative to the squared Sharpe-Ratio
of the excess market return (column SR2 Ratio). According to Ross (1976) and Kozak et al.
(2018) proportional Sharpe-Ratios above the boundary of 2 can be interpreted as near-arbitrage
opportunities.

SR2 SR2 Ratio SR2 SR2 Ratio SR2 SR2 Ratio

Market 0.0224 1

ILL 0.0041 0.18 V OL 0.0003 0.01 FDL 0.0169 0.76

ILH 0.0269 1.20 V OH 0.0266 1.19 FDH 0.0297 1.32

PBL 0.0308 1.37 BTL 0.0007 0.03 IV L 0.0146 0.65

PBH 0.0468 2.09 BTH 0.0006 0.03 IV H 0.0107 0.48

MOL 0.0084 0.37 SZL 0.0332 1.48 OPL 0.0268 1.19

MOH 0.040 1.78 SZH 0.0008 0.04 OPH 0.1488 6.64

Table (9) reveals that only the high growth PBH and the high profitability char-

acteristic OPH show SR2 multiples against the market portfolio of more than 2.

High growth has a SR2 ratio of 2.09 and is therefore only marginally beyond the

upper boundary. Furthermore it carries a negative premium, which would require

37More recently, this interpretation is also emphasised by Back et al. (2013, 2015) and Fama
and French (2020).
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short positions to exploit it as near-arbitrage opportunity.38 Only the high prof-

itability characteristic carries a positive premium and a SR2 multiple of more than

6 which is substantially beyond the Ross (1976) upper bound. Thus only one out of

18 characteristics represents a near-arbitrage opportunity. Vice versa, we find that

17 out of 18 characteristics are unlikely to be unexploited arbitrage opportunities.

Furthermore, the evidence that most of the characteristic premia do not represent

arbitrage opportunities has to be interpreted in view of the finding that charac-

teristics explain the main share of the cross-sectional return variation. Combining

both findings, it is unlikely that our results imply that the market is inefficient or

offers arbitrage opportunities. Instead, our results rather offer the interpretation

that the observed characteristic premia are the result of strong characteristic re-

lated preferences of (institutional) investors, that distort market prices and finally

translate into stock returns that line up with characteristics.

Third, as final piece of evidence in this section, we analyze the persistence in de-

mand tilts of institutional investors. The analysis is motivated by the reasoning

that if a characteristic carries a substantial premia that can in principle be ar-

bitraged away, and if institutional investors are sophisticated arbitrageurs, then

their portfolio tilt should reflect their arbitrage activity over time. Putting it dif-

ferently: Given that institutional investors account for a majority of the market

share, the fact that portfolio tilts are highly persistent over time can be interpreted

as an indication that there is not sufficient arbitrage (i.e. smart) money which will

exploit the premium.

We investigate portfolio tilt persistence by aggregating the stock-level tilts over

all stocks that carry a particular characteristic label. Similar to Equation (3), we

compute the aggregate institutional characteristic demand tilt in characteristic j

at time t as:

T Pj,t =
xP

t · φ′j,t
xM

t · φ′j,t
, (17)

where φ′j,t is again the I-vector of dummies which indicates if asset i carries char-

acteristic j at time t. The scalar product with the weights vectors aggregates

over all stocks, so T Pj,t summarizes how strongly institutional investors over- or un-

derweight stocks of a particular characteristic class relative to the corresponding

market weights of these stocks at time t. In Table (10), we report the (time-series)

average aggregate characteristic tilts for all 18 characteristics. Additionally we

38Among others, e.g. Frazzini and Pedersen (2014) argue that large groups of investors face
restrictions to short selling.
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report pairwise significance tests for the comparison of the top and bottom char-

acteristic portfolio tilts.39 The third column reports p-values from an Augmented-

Dickey-Fuller test. We conduct the analysis for the full sample, as well as the

sample that excluded the smallest 20% of stocks (labelled Non-Micro). We fur-

Table 10: In this table we report in column Mean the average aggregate characteristic tilt
according to Equation (17). In column Difference we report the average tilt difference between
the top and bottom characteristic sorts, with a corresponding t-test to test for the significance
of the difference. We want to mention that a Mann-Whitney-U-test yields similar results as the
t-test. In the last column ADF p we report p-values from an augmented Dickey-Fuller unit
root test. We report separate results for the sample that includes all stocks and the sample
without microcap stocks. * denotes significant at 10%, ** denotes significant at 5%, *** denotes
significant at 1%;)

Full Sample Non-Micro

Mean Difference H-L ADF p Mean Difference ADF p

ILL 1.015 -0.705 0.610 1.005 -0.202 0.494
ILH 0.031 (112.10)*** 0.207 0.803 (14.78)*** 0.496

PBL 0.975 0.029 0.203 1.002 0.006 0.146
PBH 1.005 (-3.71)*** 0.047** 1.008 (-1.08) 0.083*

MOL 0.957 0.082 0.000*** 0.994 0.060 0.000***
MOH 1.039 (-8.87)*** 0.000*** 1.054 (-7.73)*** 0.000***

V OL 0.965 -0.398 0.0014*** 0.924 0.089 0.001***
V OH 0.566 (15.28)*** 0.203 1.014 (-8.95)*** 0.000***

BTL 0.919 0.141 0.011** 0.937 0.142 0.042**
BTH 1.059 (-13.45)*** 0.0029*** 1.079 (-15.88)*** 0.037**

SZL 0.307 0.704 0.814 1.013 -0.013 0.611
SZH 1.011 (-58.65)*** 0.638 0.999 (0.89) 0.454

FDL 1.016 0.697 0.005*** 1.015 0.168 0.541
FDH 0.318 (-42.51)*** 0.314 0.847 (-10.83)*** 0.174

IV L 0.976 0.051 0.000*** 1.029 0.017 0.000***
IV H 1.028 (-4.83)*** 0.000*** 1.046 (-1.77)* 0.000***

OPL 0.965 0.039 0.034** 1.032 -0.034 0.073*
OPH 1.004 (-5.26)*** 0.182 0.998 (4.86)*** 0.130

ther illustrate the time-series pattern of the characteristics in the full sample by

plotting the quarterly aggregate characteristic tilt in Figure 5, where the blue solid

(purple dashed) line refers to the low (high) manifestation of each characteristic.

We include the same figure for the non-micro sample as Figure 8 in Appendix H.

In the full sample, we find statistically significant differences for all characteris-

tics. From the numerical values, in particular liquidity IL, size SZ and distress

FD show the largest tilt differences. Excluding micro-caps has a strong impact

on the results, as the difference in size SZ tilts is no longer significant and differ-

ences for IL and FD are substantially smaller. Together this insinuates that size,

liquidity, and distress are characteristics which together are important among the

39Results are from t-tests. Similar results are obtained from Mann-Whitney-U-Tests.
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Figure 5: In this figure, we plot the time series for aggregate characteristics tilts TP
j,t from

equation (17). Each panel reports the low (high) manifestation of the characteristic as blue solid
(purple dashed) line. Sample includes all stocks. Quarterly frequency. Time period 1990Q1 –
2015Q4.

small stocks. We explore the role of excluding small stocks in the following and

final robustness subsection.

D.4. Non-micro Sample

In this section we provide robustness checks for the tilt and return regressions,

where we exclude microcap stocks. Similar to Green et al. (2017) we define all

stocks that are smaller than the 20% NYSE size-quantile as microcap stocks. Over-

all this reduces our sample by approximately 50% of observations.

In column 3 of Table (11) we report results for the panel tilt regressions without

microcap stocks. The results for the sample without microcap stocks are compa-

rable to the results for the full sample. Institutional investors’ portfolio tilts are

strongly related to stock characteristics.
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Table 11: In this table we report the empirical estimation results for the Fama and MacBeth (1973) regressions

according to Equation (5), where we exclude microcap stocks: rexit = γ0t+
∑H

h=1 γh,tβ̂i,h,t−1+
∑J

j=1 γj,tφi,j,t−1+
εi,t ∀ t = 1, ..., T . The dependent variable is the monthly excess market return of individual stocks in percent. The
explanatory variables are the estimated historical factor betas and the characteristic labels/indicator dummies.
The factor betas are estimated with respect to the five Fama and French (2015) factors augmented with the Carhart
(1997) momentum factor. For the factor betas we apply the EIV correction procedure from Pukthuanthong et al.
(2019). The reported estimates in the table are the time-series averages of the monthly slope-coefficient estimates.
We provide two separate results. As the exclusion of microcap stocks reduces the number of stocks in the sample
by approximately 50 %, selecting high and low investment stocks leads to a small number of stocks in the respective
categories in the period from 1975 to 1985, due to lacking data on total assets at quarterly frequency. Therefore,
we provide results for two sample periods. The first sample period is January 1975 to June 2016, but excludes the
high/low investment characteristic. The second sample is from January 1985 to June 2016 and includes the full
set of characteristics. In column three we provide results according to Equation 8), where we exclude microcap¡

stocks: Ti = α0+
∑F

f=1 θftβ̂if +
∑J

j=1 θjtφij +ci+pt+εit. The dependent variable is the demand tilt, winsorized

at the 97 % quantile. The explanatory variables include the univariate factor betas with respect to the market,
SMB, HML, CMA, RMW and momentum factor, estimated over a rolling window of 36 months and winsorized at
the 1 % and 99 % quantile. Additionally, we include the characteristic labels/indicator dummies, which identify
whether a particular stock belongs to the top/bottom quantile according to the corresponding characteristic sort
(see Section B.3). The regression coefficients can be interpreted as the change in percentage points in the average
stock tilt, when multiplied with 100. * denotes significant at 10%, ** denotes significant at 5%, *** denotes
significant at 1%, whereby p-values are rounded to two digits.

(1) (2) (3)

Dependent variable:

Return rexi,t Return rexi,t Tilt Ti,t

const 0.794 (3.90) *** 0.845 (4.75) *** 0.949 (107.9) ***

mkt -0.16 (-1.05) -0.099 (-0.67) -0.004 (-1.13)

smb -0.134 (-1.67) 0.003 (0.04) -0.00 (-0.28)

hml -0.081 (-0.80) -0.45 (-0.49) 0.001 (0.46)

cma 0.107 (1.59) 0.095 (1.64) 0.006 (2.96) ***

rmw 0.026 (0.40) 0.069 (1.16) 0.008 (6.80) ***

mom -0.15 (-1.26) -0.176 (-1.59) 0.003 (1.22)

ILL 0.052 (0.76) 0.002 (-0.03) 0.024 (4.85) ***

ILH -0.07 (-1.13) -0.009 (-0.17) -0.040 (-10.62) ***

PBL 0.054 (0.90) 0.110 (2.15) ** 0.003 (0.68)

PBH 0.025 (0.34) -0.064 (-1.02) 0.014 (2.93) ***

MOL -0.074 (-0.77) -0.050 (-0.64) -0.026 (-6.77) ***

MOH 0.222 (2.53) ** 0.246 (3.27) *** 0.004 (0.91)

V OL 0.026 (0.36) -0.036 (-0.59) -0.006 (-1.79) *

V OH -0.57 (-3.37) *** -0.582 (-4.15) *** -0.021 (-5.42) ***

BTL 0.064 (1.05) 0.038 (0.70) -0.010 (-3.11) ***

BTH -0.008 (-0.107) 0.014 (-0.23) 0.028 (6.63) ***

SZL 0.076 (1.15) 0.084 (1.57) 0.011 (2.78) ***

SZH -0.078 (-1.11) -0.077 (-1.31) 0.005 (0.96)

FDL 0.054 (1.05) 0.053 (1.14) 0.048 (9.03) ***

FDH 0.116 (0.77) 0.106 (0.83) -0.096 (-11.80) ***

IV L 0.013 (0.170) *** - - 0.005 (1.94) *

IV H -0.128 (-1.51) *** - - 0.022 (6.91) ***

OPL -0.143 (-2.18) ** -0.121 (-2.18) ** 0.018 (4.69) ***

OPH 0.177 (3.13) *** 0.183 (3.67) *** 0.001 (0.32)

Observations 377 497 173,633

Within-R2 6.93 %
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Table continued:

(1) (2) (3)

Also for the cross-section of stock returns characteristics are pricing relevant, as we

find significant and economically large characteristic premiums for the momentum,

volatility and profitability characteristics. We argue that the finding that the

characteristics illiquidity, size and financial distress are not pricing relevant in

the sample without microcap stocks directly results from excluding the smallest

stocks in the sample. Excluding approximately 50 % of the smallest stocks from

the dataset necessarily affects the findings on the size characteristic premium.

Furthermore, financial distress and illiquidity is also higher among small stocks.

Therefore, the characteristic premiums are directly affected by excluding microcap

stocks.

Further evidence that characteristics are pricing relevant for the cross-section of

stock returns is provided in Figure (6).

Figure 6: In this table we plot the time series of the cross-sectional variation, which is explained
by factor-risk exposure (i.e. betas) and characteristics over time. As shown by Chordia et al.
(2015) due to the correlation between factor betas and characteristics the two ratios do not
necessarily have to add up to 1. The mean over the full sample period for the explanatory
power of characteristics is 46.34 %, while the corresponding mean is 45.72 % for the factor betas.
The dotted and the solid line respectively show the moving average of the factor/beta explained
component over a 12 month and 60 month rolling window.

In comparison to the full sample, the cross-sectional return variation which is ex-

plained by factor risk-exposure, is larger for the sample without microcap stocks.
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Indeed, factor risk exposure and characteristics explain an equal proportion of ap-

proximately 45 % of the cross-sectional variation in stock returns. This finding

holds throughout the full sample period. Contrasting with the findings of Green

et al. (2017) we do not document any deterioration in the characteristic-explained

part.

Table 12: In Column 1 we report the results of the panel regression according to Equation (13), where we
exclude microcap stocks. In Columns 2 and 3 we report the estimation results of the panel regression according to
Equation (14). Coefficients are reported in percent***. Standard errors are estimated according to Driscoll and
Kraay (1998). * denotes significant at 10%, ** denotes significant at 5%, *** denotes significant at 1%, whereby
p-values are rounded to two digits.

(1) (2) (3) (4)
Dependent variable

rexit rexit r̂ex,betait r̂ex,charit

constant 0.130 0.037 -0.022 -0.019
(7.17) *** (3.02) *** (1.81) * (-8.10) ***

T̂i,t−1 -0.081
(-4.80) ***

T̂ beta
i,t−1 -0.000 0.035 0.027

(0.00) (1.41) (1.88) *

T̂ char
i,t−1 -0.046 0.009 -0.008

(-2.15) ** (0.85) (0.027)

Time-Fixed Effects Yes Yes Yes Yes
Firm-Fixed Effects Yes Yes Yes Yes

Within-R2 17.97% 22,20% 50.89% 11.76 %
Observations 171,822 154,939 154,939 154,939

Finally, in Table (22) we provide results on how demand tilts are related to the

cross-section of stock returns. Similar to the results for the full sample we find that

institutional portfolio tilts are negatively related to consecutive stock returns (see

column (1)). The decomposition of tilts into a factor-induced and characteristic-

induced demand component shows that only characteristic-induced demand tilts

are relevant for the cross-section of stock returns, whereby the corresponding co-

efficient is significant at the 5 % level. The finding in column (3), shows a slightly

significant and positive coefficient for factor related demand tilts on consecutive

characteristic related returns. Indeed, the factor related tilt component is zero in

the excess return regression of column (2), which is a more parsimonious model,

as it does not require any first-step decomposition of the left-hand variable (i.e.

the returns). We therefore argue that the results of column (2) are more robust

evidence of a relationship between characteristic-induced demand tilts and consec-

utive stock returns. Despite that overall the estimated coefficients are smaller for

the non-microcap sample, compared to the full-sample, we conclude that institu-
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tional demand tilts are also pricing relevant for the cross-section of non-microcap

returns.

E. Conclusion

It is remarkable that a very recent contribution of Harvey and Liu (2021) concludes

that even after 50 years of research in asset pricing, there is still no canonical factor

model. Even worse, there seems to be inconclusive evidence with respect to the rel-

evance of risk factors versus stock characteristics. Recent contributions, based on

novel econometric advancements, find surprisingly little support for factors that

have long been considered as well-established risk-based explanatory variables.

One reason for these contradictory results is an underlying identification dilemma

which makes it hard to discriminate between risk factors and characteristics only

on the basis of return data, as recently stressed by Kozak et al. (2018) or Pastor

et al. (2020).

Our contribution wants to help resolve this dilemma by resorting to institutional

investor holdings data. Our main result is to show that – in line with recent liter-

ature – the common (six) risk factors find little empirical support when tested on

a sample of individual stocks in EIV-corrected cross-sectional regressions. Instead

characteristics are associated with significant return premia and explain roughly

2/3 of the variation in expected returns. Furthermore, we find no evidence that

this variance decomposition declined in the most recent decades. To assess the

importance of characteristics, we propose a novel definition which treats charac-

teristics as binary indicators and thereby captures the idea that only salient facts

of stocks will be recognized by investors. Our main novel contribution is to define

portfolio tilts of individual institutional investors (derived from 13(f) filings) and

to show that institutional demand is strongly related to characteristics but not

to risk factors. We further provide evidence that the institutional demand tilt is

negatively related to expected returns, thereby confirming related evidence that

professional investors appear to fail to exploit alleged anomalies.

Overall, the evidence from our analysis strongly suggests that institutional in-

vestors’ demand is rather driven by taste for characteristics than aversion to risk

factors and that this pattern is reflected in the cross-section of expected returns.
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A. Model description

A.1. Modeling demand towards stock and firm character-

istics

Consider K investors indexed by k = 1, . . . , K investing in i = 0, 1, . . . , N assets,

where asset 0 is the risk-free asset, returning rate rf . Starting wealth of each

investor is W k
0 . We assume that returns are jointly normally distributed, which

directly results from asset prices being normally distributed p ∼ N (p̄, Σ) . Addi-

tionally, each asset i can be characterized by a set of characteristics φij ∈ {0, 1},
where j = 1, . . . , J . We interpret φ as an indicator variable. For example, φ may

capture if an asset is distressed or not. Thus, φij = 1 would imply that the asset i

is distressed whereas φij = 0 would mean that the asset i is not distressed. In that

sense the indicator variable φ can be interpreted as a binary label of important

asset characteristics.Asset returns are additionally impacted by H risk factors,

indexed by h = 1, . . . , H. The risky final wealth of investor k, who invests the

portfolio weights xk, is given by:

W k
1 = W k

0 [1 + (rf + x′k(r − rf1))]. (18)

Now, each investor k is assumed to be risk averse and having a preference according

to the j-th characteristic: φj for j = 1, . . . , J . To be explicit, we define the utility

function in terms of (final) wealth and characteristics in the following way:

uk(W k
1 ,φ,Z) = −e−akWk

1 +ak
∑J

j b
k
j x′kφj+ak

∑H
h ckhZh , (19)

where ak measures the parameter of constant absolute risk aversion, bkj is the (rel-

ative) attitude towards the asset’s characteristic j, and ckh is the attitude towards

risk factor Zh impacting the asset returns. Thus, asset characteristics can provide

non-pecuniary utility/disutility to investors. According to our definition positive

preferences for a particular characteristic correspond to negative values of bkj (i.e.

bkj < 0). Observe that we make no statement about the sign of the bkj since posi-

tive as well as negative values are allowed. We assume that the H risk factors are

jointly normal distributed with variance-covariance matrix ΣZ as well.

In a (perfect) world under the assumption that there are no asset characteristics

and without additional risk factors, the model leads to the well known Sharpe-

Lintner-Mossin capital asset pricing model since φj = 0 ∀ j and ZH = 0 ∀ h.

The same result applies if the bkj and ckh would be zero for all investors. Thus, the
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CAPM is just a special case of our model. Note that the characteristics are not

assumed to be random variables, since they are known at time t = 0. They simply

constitute exogenously given inputs to the model.

From the assumptions the expected utility is given by

E[uk(W k
1 ,φ,Z)] = E

[
−e−akWk

1 +ak
∑J

j b
k
j x′kφj+ak

∑H
h ckhZh

]
(20)

= −e−akV k(µ,Σ,φ,Z) (21)

where the value function V k is defined as:

V k(µ,Σ,φ,Z) = W k
0 [1 + (rf + x′k(µ− rf1))]− ak

2
(W k

0 )2x′kΣxk (22)

−
J∑
j=1

W k
0 b̂

k
jx
′
kφj −

H∑
h=1

ckhE[Zh]−
H∑
h=1

ak(ckh)
2

2
Var(Zh)(23)

−
H∑
h=1

x′kc
k
hW

k
0 Cov(r, Zh) +

H−1∑
h=1

H∑
l=h+1

ckhc
k
l Cov(Zh, Zl) (24)

Note that we scale the attitude towards the characteristic by the wealth level

such that bkj ≡ W k
0 b̂

k
j , whereby b̂k1 is a scaled parameter of the attitude towards

characteristic j. This transformation simplifies the expression of the characteristic

preferences in the following optimization problem.40 Maximizing with respect to

the portfolio weights xk and setting the result to zero delivers the optimal asset

weights:

x∗k =
Σ−1(µ− rf1)

akW k
0

−
J∑
j=1

Σ−1b̂kjφj

akW k
0

−
H∑
h=1

Σ−1ckhCov(r, Zh)

akW k
0

(25)

Note that, according to our definition bkj is negative, if an investor has a positive

preference for characteristic φj. Hence, if bkj < 0, the individual optimal demand

ceteris paribus increases if asset i exhibits characteristic j. Agents with positive

preferences for a particular stock characteristic thus receive non-pecuniary utility

from investing into assets that exhibit a particular characteristic and are therefore

accepting lower expected returns. According to Pastor et al. (2020) preferences

for ”green” stock investments provide a potential example for this type of charac-

teristic preferences.

40It is sufficient to maximize the exponent, as the exponential function is monotonically increas-
ing in the exponent.
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A.2. Equilibrium expected returns

Summing Equation (25) over K investors for each stock and dividing by the ag-

gregated wealth W total
0 gives the weights of the market portfolio:

xM =

∑K
k=1 x∗kW

k
0

W total
0

(26)

Using our expression for the optimal asset weights x∗k and defining A =
∑K

k=1
1
ak

,

Bj =
∑K

k=1

b̂kj
ak

, Ch =
∑K

k=1

ckh
ak

, κM =
W total

0

A
, κh = Ch

A
, and κj =

Bj

A
we get the

following pricing equation:

µ− rf1 = κMΣxM +
J∑
j=1

κjφj +
H∑
h=1

κhCov(r, Zh) (27)

We reach our final asset pricing equation for asset i by setting κ̂M = κMσ
2
M and

κ̂h = κhψVar(rh), where portfolio return rh is perfectly correlated with Zh, i.e.

rh = Zh/ψ, such that Cov(r, Zh) = ψCov(r, rh) :

µi − rf = βiM κ̂M +
H∑
h=1

βihκ̂h +
J∑
j=1

κjφij (28)

Equation (28) is our main theoretical result: the excess return of asset i is a

function of the asset’s beta with the market, the H mimicking portfolios, the

return contribution of the market plus the return contributions of the relevant

characteristics, given the asset exhibits the respective characteristic j. Note that

βiM = Cov(ri,rM )
Var(rM )

and βih = Cov(ri,rh)
Var(rh)

have the interpretation of standard bivariate

OLS betas, not multivariate regression betas.
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B. Descriptive statistics

Table 13: This table provides descriptive statistics for the individual excess stock returns
and the stock and firm characteristics, which are the basis for the dummy-variable assignment
procedure. The descriptive statistics cover the mean, median, standard deviation (σ), the 25%
and 75% percentiles. Additionally, we provide summary statistics on the average, minimum and
maximum number of firms that are included in our sample in each month. The sample period is
January 1975 to May 2016.

Variable Mean Median σ 25% Percentile 75% Percentile

Panel A. Return and Stock Characteristics

Excess Return 0.010 -0.004 0.193 -0.075 0.075

Size 2,021.715 115.467 12,618.60 24.747 631.879

B/M-ratio 0.758 0.584 7.470 0.313 1.014

Momentum 0.082 0.024 0.521 -0.170 0.238

Trading Liquidity 1.074 0.011 25.690 0.001 0.140

Volatility 0.036 0.028 0.033 0.018 0.044

Market Beta 0.808 0.779 0.781 0.281 1.687

Financial Distress 0.009 0.000 0.078 0.000 0.000

Profitability -0.116 0.042 26.81 -0.012 0.080

Investments 0.038 0.010 1.059 -0.023 0.049

Panel B. Tilt measure

Full Sample 0.705 0.692 0.490 0.236 1.151

Small Stocks 0.236 0.141 0.262 0.033 0.353

Large Stocks 1.070 1.150 0.361 0.875 1.341

Table 14: In this table we report variance inflation factors (VIFs) for each of the 18 characteristic
labels/dummies as described in Section B.3. The VIFs stem from a multivariate panel regression
of monthly excess stock returns on the set of 18 characteristic dummies. Additionally we report
VIFs after excluding the two trading liquidity identifiers, which are based on the Amihud (2002)
illiquidity measure.

V IF V IF V IF

(1) (2) (1) (2) (1) (2)

SZH 3.11 1.77 MOL 1.32 1.32 OPH 1.16 1.16

ILL 2.72 - V OH 1.32 1.27 PBL 1.15 1.18

SZL 1.89 1.38 V OL 1.25 1.24 IV L 1.11 1.16

FDL 1.86 1.84 MOH 1.24 1.57 BTL 1.10 1.10

ILH 1.8 - PBH 1.19 1.19 BTH 1.07 1.07

FDH 1.32 1.32 OPL 1.19 1.19 IV H 1.05 1.05
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Table 15: In panel A and Panel B of this table we report descriptive statistics for the re-
gressor betas in the regression model of Equation (5), which are based on the EIV-correction
procedure from Jegadeesh et al. (2019). The betas are univariate factor betas with respect to
the market (MKTRF ), small-minus-big (SMB), high-minus-low (HML), conservative-minus-
aggressive (CMA), robust-minus-weak (RMW ) and high minus low momentum (MOM) factors.
The betas are estimated from daily returns over the preceeding 720 trading days. We apply the
correction according to Dimson and Mussavian (1999) to the daily beta estimates. In panel C of
this table we report descriptive statistics for the factor betas, which are estimated based on the
EIV-correction procedure of Pukthuanthong et al. (2019). In this approach stocks are sort into
deciles of market-capitalistion and factor betas. The individual factor beta is then replaced by
the average beta of the corresponding size-beta category.

βmkt βsmb βhml βcma βrmw βmom

Panel A. Statistics EIV-corrected Betas

Mean 0.919 0.720 -0.683 -0.978 -0.766 0.099

Median 0.874 0.607 -0.519 -0.875 -0.598 0.039

Maximum 4.730 7.35 2.845 9.436 12.99 3.95

Minimum -0.732 -4.635 -9.866 -7.647 -9.612 -3.089

Std. Dev. 0.606 0.972 1.246 1.550 1.628 0.882

Observations 1,831,539 1,831,539 1,831,539 1,831,539 1,831,539 1,831,539

Panel B. Statistics Even-/Odd-Month Betas

Even-Month Betas

Mean 0.918 0.693 -0.753 -1.099 -0.789 0.159

Median 0.871 0.577 -0.604 -0.957 -0.649 0.085

Maximum 4.125 5.017 4.769 7.262 6.921 4.526

Minimum -1.586 -3.101 -6.642 -9.194 -8.999 -4.199

Std. Dev. 0.666 1.111 1.350 1.720 1.890 1.011

Observations 928,083 928,083 928,083 928,083 928,083 928,083

Odd-Month Betas

Mean 0.905 0.693 -0.598 -0.840 -0.720 0.007

Median 0.864 0.565 -0.495 -0.740 -0.559 -0.0168

Maximum 3.417 5.147 4.670 7.750 6.120 4.427

Minimum -1.897 -2.509 -5.377 -8.461 -9.051 -3.746

Std. Dev. 0.659 1.095 1.309 1.619 1.828 0.933

Observations 930,220 930,220 930,220 930,220 930,220 930,220
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Figure 7: In this figure, we report histograms for the number of changes individual stocks
change the status of being assigned a particular characteristic. Each panel contains the number
n of stocks from the full sample that were assigned this characteristic at least once in the sample
period. Each panel reports the mean number m of status changes for that characteristic label.
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C. Alternative EIV correction and OLS Results

Table 16: In this table we report the empirical estimation results for the standard OLS regressions and the EIV
corrected Fama and MacBeth (1973) regressions according to Equation (5): rexit = γ0t +

∑H
h=1 γh,tβ̂i,h,t−1 +∑J

j=1 γj,tφi,j,t−1 + εi,t ∀ t = 1, ..., T . The dependent variable is the monthly excess market return of individual
stocks in percent. The explanatory variables are the estimated historical factor betas and the characteristic
labels/indicator dummies. For the EIV-correction we apply the instrumental variable approach as proposed by
Jegadeesh et al. (2019), which uses separate factor betas for odd and even months. The factor betas are estimated
with respect to the five Fama and French (2015) factors augmented with the Carhart (1997) momentum factor. The
reported estimates in the table are the time-series averages of the monthly slope-coefficient estimates. Within the
EIV-corrected approach we exclude all coefficient estimates that exceed the boundary of six standard-deviations
around the corresponding mean factor/characteristic portfolio return. For the volatility characteristic and the
distress characteristic we exclude observations that are six times larger than their corresponding OLS coefficient
estimates. Both described criterions are proposed by Jegadeesh et al. (2019). The sample period is January 1975
to June 2016. * denotes significant at 10%, ** denotes significant at 5%, *** denotes significant at 1%, whereby
p-values are rounded to two digits.

(1) OLS (2) EIV – FF3 (3) EIV – FFC6 (4) Multivariate β

const 0.643 0.701 0.520 0.785
(3.33) *** (3.03) ** (1.55) (3.92) ***

mkt -0.018 0.104 0.189 -0.006
(-0.134) (0.25) (0.32) (-0.07)

smb 0.081 0.35 0.393 0.086
(1.46) (1.76) * (1.11) (1.78) *

hml -0.065 0.61 0.219 0.030
(-0.72) (2.25) ** (0.46) (0.58)

cma 0.074 - 1.039 0.074
(1.42) - (3.25) *** (1.13)

rmw 0.040 - 0.584 0.006
(0.756) *** - (1.87) * (0.756)

mom -0.245 - -0.696 -0.116
(-2.44) ** - (-1.24) (-1.40)

ILL -0.070 -0.095 -0.092 -0.086
(-1.17) (-1.55) (-1.55) (-1.37)

ILH 0.338 0.374 0.367 0.281
(3.90) *** (4.41) *** (4.32) *** (3.14) ***

PBL 0.247 0.238 0.234 0.200
(4.00) *** (3.76) *** (3.75) *** (3.23) ***

PBH -0.308 -0.330 -0.323 -0.299
(-4.91) *** (-4.79) *** (-4.81) *** (-4.61) ***

MOL -0.198 -0.288 -0.240 -0.113
(-2.03) ** (-3.57) *** (-2.76) *** (-1.10)

MOH 0.361 0.296 0.293 0.284
(5.44) *** (4.43) *** (4.51) *** (3.79) ***

V OL -0.022 -0.048 -0.051 -0.022
(-0.34) (-0.65) (-0.74) (-0.31)

V OH -0.531 -0.53 -0.513 -0.431
(-3.76) *** (-3.57) *** (-3.59) *** (-2.74) ***

BTL -0.014 -0.046 -0.046 -0.093
(-0.289) (-0.91) (-0.92) (-1.87) *

BTH 0.047 0.054 0.057 -0.072
(0.84) (0.90) (0.93) (-1.06)

SZL 0.418 0.410 0.397 0.456
(4.27) *** (4.02) *** (3.97) *** (4.42) ***

SZH -0.024 -0.062 -0.067 -0.073
(-0.35) (-0.87) (-0.947) (-1.01)

FDL 0.173 0.141 0.137 0.121
(2.38) ** (2.43) ** (2.44) ** (2.22) **

FDH 0.773 0.807 0.796 0.814
(3.17) *** (3.87) *** (3.85) *** (3.92) ***

IV L 0.252 0.045 0.059 0.211
(2.38) ** (0.58) (0.75) (1.78) *

IV H -0.128 -0.124 -0.113 -0.181
(-1.94) * (-2.26) ** (-2.10) ** (-2.63) ***

OPL -0.246 -0.291 -0.292 -0.248
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Table continued:

(1) (2) (3) (4)

(-3.51) *** (-4.43) *** (-4.54) *** (-3.47) ***

OPH 0.422 0.414 0.415 0.383
(8.93) *** (8.34) *** (8.64) *** (8.05) ***

Sample Period 1975-2016 1975-2016 1975-2016 1975-2016
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D. Alternative Tilt and Return Regressions

Table 17: In this table we report in column (1) results for the quarterly Fama and MacBeth (1973) regressions in

order to decompose the tilts according Equation (??): Tit = τ0t+
∑H

h=1 τh,tβ̂i,h,t−1+
∑J

j=1 τj,tφi,j,t−1+εi,t ∀ t =
1, ..., T . The dependent variable is the institutional tilt. The explanatory variables are the estimated historical
factor betas and the characteristic labels/indicator dummies. In column (2) we report results for the Equation

(8): Ti = α0 +
∑F

f=1 θftβ̂if +
∑J

j=1 θjtφij + pt + εit, whereby we exclude firm fixed effects. The dependent
variable is the institutional tilt. The explanatory variables are the estimated historical factor betas and the
characteristic labels/indicator dummies. The dependent variable is the demand tilt, winsorized at the 97 %
quantile. The explanatory variables include the univariate factor betas with respect to the market, SMB, HML,
CMA, RMW and momentum factor, estimated over a rolling window of 36 months and winsorized at the 1 %
and 99 % quantile. Additionally, we include the characteristic labels/indicator dummies Standard errors are
estimated according to Driscoll and Kraay (1998). In column (3) we report results according to Equation (??):

r̂exit = γ0t +
∑H

h=1 γhtβ̂i,h,t−1 +
∑J

j=1 γjtφi,j,t−1 ∀ t = 1, ..., T . The dependent variable are quarterly returns in

percent. The explanatory variables are the estimated historical factor betas and the characteristic labels/indicator
dummies. For the factor beta estimates we apply the EIV correction procedure of Pukthuanthong et al. (2019).
* denotes significant at 10%, ** denotes significant at 5%, *** denotes significant at 1%.

(1) (2) (3)
FMB Panel Return

Dependent variable:
Tilt Ti,t Tilt Ti,t Return rexi,t

const 0.706 1.551
(36.29) *** (1.76) *

mkt 0.090 0.011 -0.282
(16.19) *** (3.17) *** (-0.66)

smb 0.022 0.010 0.181
(8.14) *** (3.19) *** (0.83)

hml 0.012 0.009 -0.274
(4.55) *** (2.51) ** (-1.01)

cma -0.003 0.003 0.000
(-1.52) (2.01) ** (-0.03) ***

rmw 0.029 0.015 -0.030
(9.80) *** (9.02) *** (-0.16) *

mom -0.021 -0.001 -0.789
(-5.05) *** (-0.68) (-1.71) *

ILL 0.228 0.238 -0.399
(44.21) *** (21.35) *** (-1.74) *

ILH -0.179 -0.177 1.320
(-17.25) *** (-8.40) *** (3.87) ***

PBL 0.036 0.036 0.743
(13.58) *** (6.53) *** (2.27) **

PBH -0.065 -0.074 -0.677
(-12.72) *** (-6.77) *** (-2.06) **

MOL -0.053 -0.046 -0.778
(-17.77) *** (-11.56) *** (-1.82) *

MOH 0.001 0.002 0.982
(0.27) (0.39) (3.74) ***

V OL -0.080 -0.088 -0.014
(-21.12) *** (-12.52) *** (-0.06)

V OH -0.102 -0.073 -0.583
(-20.64) *** (-8.96) *** (-0.90)

BTL -0.035 -0.062 -0.165
(-12.94) (-11.05) *** (0.89)

BTH -0.010 0.011 0.170
(-3.24) *** (1.68) (0.80)

SZL -0.269 -0.309 1.440
(-86.24) *** (-58.84) *** (2.66) ***

SZH 0.050 0.071 0.061
(4.89) *** (3.41) *** (0.20)

FDL 0.150 0.161 0.131
(33.59) *** (16.47) *** (0.53)

FDH -0.073 -0.071 3.383
(-12.96) *** (-6.76) *** (3.32) ***

IV L -0.027 -0.026 0.977
(-10.63) *** (-6.25) *** (2.52) **

IV H -0.015 -0.016 -0.673
(-6.94) *** (-4.00) *** (-3.21) ***
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Table continued:

(1) (2) (3)

OPL -0.068 -0.075 -0.981
(-34.37) *** (-15.24) *** (-2.90) ***

OPH 0.018 0.019 0.756
(5.37) *** (2.73) *** (3.61) ***
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E. Return/Tilt Regression with IV EIV correc-

tion

Table 18: In Column 1 we report the results of the panel regression according to Equation
(13). In Columns 2 and 3 we report the estimation results of the panel regression according to
Equation (14). Coefficients are reported in percent***. Standard errors are estimated according
to Driscoll and Kraay (1998). * denotes significant at 10%, ** denotes significant at 5%, ***
denotes significant at 1%, whereby p-values are rounded to two digits.

(1) (2) (3)
Dependent variable

rexit r̂ex,betait r̂ex,charit

constant 0.046 0.020 -0.018
(8.02) *** (7.87) *** (-4.87) ***

T̂ beta
it 0.018 0.035 -0.007

(-0.20) (0.88) (-0.25)

T̂ char
it -0.162 -0.009 -0.031

(-7.29) *** (-1.60) (-2.94) ***

Time-Fixed Effects Yes Yes Yes
Firm-Fixed Effects Yes Yes Yes

Within-R2 17,02% 53.68% 14.68 %
Observations 373,772 373,772 373,772
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F. Latent Factors Results with IV EIV correc-

tion

Table 19: In this table we report the empirical estimation results for the Fama and MacBeth
(1973) regressions according to Equation (5): rexit = γ0t +

∑H
h=1 γh,tβ̂i,h,t−1 +

∑J
j=1 γj,tφi,j,t−1 +

εi,t ∀ t = 1, ..., T . The dependent variable is the monthly excess market return of individual
stocks. The explanatory variables are the estimated historical factor betas and the characteristic
labels/indicator dummies. The factor betas are estimated with respect to the five Fama and
French (2015) factors augmented with the Carhart (1997) momentum factor. Additionally, we
also use the four latent risk factors provided by Kelly et al. (2019) (F1, F2, F3, F4). As described
in Section (B.2) we use disjunct sets of odd and even month betas to serve as regressors and
instrumental variables in the monthly cross-sectional regressions. In contrast to the results of
Table ?? we use factor betas that are estimated from monthly (not daily) returns over a 36-month
rolling window. The reported estimates in the table are the time-series averages of the monthly
slope-coefficient estimates. The results are reported in percent. The sample period is January
1975 to July 2014. For comparison reasons column FF Six Factor 2016 provides results for the
period January 1975 to June 2016. * denotes significant at 10%, ** denotes significant at 5%,
*** denotes significant at 1%, whereby p-values are rounded to two digits.

Dependent variable rexit

(1) (2) (3)

6-Factor-2016 6-Factor-2014 Latent-4-Factor

const 0.774 0.758 const 0.746

(3.28) *** (3.11) *** (3.05) ***

mkt 0.000 0.019 F1 0.274

(0.00) (0.31) (2.36) **

smb 0.020 0.030 F2 0.072

(0.61) (0.89) (0.70)

hml -0.046 -0.045 F3 0.059

(-1.10) (-1.03) (1.48)

cma 0.045 0.047 F4 0.042

(1.66) (1.69) * (1.15)

rmw 0.050 0.060

(1.57) (1.82) *

mom -0.042 -0.047

(-1.03) (-1.13)

ILL -0.091 -0.085 ILL -0.083

(-1.36) (-1.24) (-1.22)

ILH 0.290 0.282 ILH 0.289

(3.04) *** (2.83) *** (2.90) ***

PBL 0.218 0.237 PBL 0.233

(3.46) *** (3.72) *** (3.63) ***

PBH -0.286 -0.313 PBH -0.308

(-4.08) *** (-4.38) *** (-4.30) ***

MOL -0.162 -0.144 MOL -0.130

(-1.65) (-1.44) (-1.30)

MOH 0.309 0.329 MOH 0.316

(4.44) *** (4.56) *** (4.48) ***

V OL -0.022 -0.064 V OL 0.064

(-0.260) (-0.75) (-0.74)

V OH -0.456 -0.442 V OH -0.445

(-2.85) *** (-2.76) *** (-2.81) ***

BTL -0.088 -0.082 BTL -0.065
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Table 16 continued:

(1) (2) (3)

(-1.57) (-1.43) (-1.13)

BTH -0.045 -0.045 BTH -0.062

(-0.58) (-0.57) (-0.78)

SZL 0.458 0.510 SZL 0.499

(4.40) *** (4.80) *** (4.79) ***

SZH -0.084 -0.086 SZH -0.087

(-1.14) (-1.13) (-1.14)

FDL 0.098 0.094 FDL 0.099

(1.64) (1.49) (1.60)

FDH 0.741 0.807 FDH 0.807

(3.57) *** (3.79) *** (3.78) ***

IV L 0.309 0.273 IV L 0.262

(2.76) *** (2.38) *** (2.24) **

IV H -0.183 -0.181 IV H -0.183

(-2.62) *** (-2.52) *** (-2.56) **

OPL -0.251 -0.205 OPL -0.198

(-3.44) *** (-2.76) *** (-2.70) ***

OPH 0.382 0.410 OPH 0.404

(7.76) *** (8.18) *** (8.03) ***

Observations 498 475 475
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G. Panel Regression Results

Table 20: In this table we report the results of the Hoechle et al. (2020) panel regression model from Equation
(16) including firm fixed effects. The dependent variable is the excess stock return expressed in percent. The
explanatory variables include the characteristic dummies as introduced in Section (B.3) and the five Fama-French
factors market, SMB, HML, CMA, RMW augmented with the Carhart (1997) momentum factor. In column
”Jensen-α” we report the marginal contribution of each characteristic to the total Jensen-α of stock i. In the
columns βMKT , βSMB , βHML, βCMA, βRMW and βMOM we report the contributions to the corresponding risk-
factor loadings for each stock characteristic. In row ”Hausman-test” we report the results of the Haumsan(1978)-
type specification test as introduced by Hoechle et al. (2020). * denotes significant at 10%, ** denotes significant
at 5%, *** denotes significant at 1%;

Characteristic Jensen-α βmkt βsmb βhml βcma βrmw βmom

constant -0.078 0.982 1.024 0.277 -0.038 0.131 -0.243
(-0.71) (33.73) *** (17.67) *** (5.31) *** (-0.46) (1.72) * (-6.38) ***

ILL -0.787 0.112 -0.163 -0.135 -0.113 -0.089 -0.016
(-7.76) *** (5.62) *** (-6.46) (-3.22) *** (-1.76) * (-1-98) ** (-0.51)

ILH 0.491 -0.129 -0.142 0.048 -0.039 0.171 0.054
(3.11) *** (-3.26) *** (-2.60) *** (0.53) (-0.36) (2.60) ** (1.49)

PBL 0.595 0.003 -0.007 0.231 0.102 0.014 -0.069
(6.40) *** (0.17) (-0.25) (6.55) *** (1.76) * (0.34) (-3.17) ***

PBH -0.641 0.004 0.006 -0.314 -0.028 -0.224 0.123
(-7.86) *** (0.24) (0.20) (-7.25) *** (-0.47) (-6.15) *** (6.82) ***

MOL 0.641 0.039 0.063 -0.138 -0.103 -0.202 -0.400
(4.54) *** (1.15) (1.39) (-2.95) *** (-0.91) (-4.34) *** (-6.39) ***

MOH -0.085 0.048 0.063 -0.065 0.024 -0.107 0.323
(-1.24) (1.99) ** (1.84) * (-2.04) ** (0.32) (-1.68) * (9.85) ***

V OL 0.124 -0.248 -0.271 0.036 0.177 0.086 0.019
(1.59) (-13.99) *** (-8.73) *** (0.96) (3.62) *** (2.26) ** (1.10)

V OH 0.125 0.144 0.334 0.026 -0.005 -0.600 -0.064
(0.66) (3.12) *** (3.79) *** (0.26) (-0.04) (-8.52) *** (-1.25)

BTL -0.076 -0.143 -0.144 0.086 0.116 0.024 0.084
(-0.80) (-6.43) *** (-4.33) *** (1.89) * (2.41) ** (0.63) (4.16) ***

BTH -0.380 0.174 0.107 -0.210 0.097 -0.221 -0.157
(-2.63) *** (5.80) *** (2.13) ** (-3.88) *** (1.01) (-3.65) *** (-4.59) ***

SZL 2.100 -0.186 -0.080 -0.097 0.095 -0.222 0.068
(12.55) *** (-6.86) *** (-1.68) * (-1.38) (0.92) (-4.20) *** (1.57)

SZH -1.040 0.046 -0.341 0.009 0.140 0.104 -0.023
(8.97) *** (2.34) ** (-10.57) *** (0.21) (2.52) ** (2.66) *** (-0.88)

FDH 1.802 0.011 0.235 0.081 0.096 -0.464 -0.100
(8.20) *** (0.23) (2.30) ** (0.63) (0.56) (-4.42) *** (-1.70) *

FDL -0.104 -0.060 -0.184 -0.062 -0.044 0.118 0.121
(-1.44) (-3.58) *** (-6.06) *** (-1.80) * (-1.08) (2.96) *** (7.80) ***

IV L 0.940 -0.063 0.068 -0.281 0.295 -0.340 -0.040
(8.78) *** (-1.85) * (0.98) (-2.89) *** (2.32) ** (-2.80) *** (-1.07)

IV H -0.019 0.047 0.059 -0.094 -0.266 0.034 -0.010
(-0.23) (2.81) *** (1.47) (-2.47) ** (-3.65) *** (0.63) (-0.49)

OPL 0.113 -0.032 0.106 -0.048 -0.158 -0.349 -0.047
(0.98) (-0.96) (1.92) * (-0.94) (-1.67) * (-9.26) *** (-1.05)

OPH 0.273 0.034 0.038 0.084 -0.035 0.359 -0.050
(4.77) *** (2.56) ** (1.94) * (3.31) *** (-0.83) (11.95) *** (-3.61) ***

Observations 1.861.233
Within R2 11.66 %

Hausmann-test F(126,497)=63.91; Prob>F=0.000
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H. Tilt Persistence – Non-Micro Evidence

Figure 8: In this figure, we plot the time series for aggregate characteristics tilts TP
j,t from equation (17). Each

panel reports the low (high) manifestation of the characteristic as blue solid (purple dashed) line. Sample excludes
microcap stocks, i.e. all stocks below the 20% breakpoint. Quarterly frequency. Time period 1990Q1 – 2015Q4.
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I. Return/Tilt Regression – Non-Micro Evidence

Table 22: In Column 1 we report the results of the panel regression according to Equation (13), where we
exclude microcap stocks. In Columns 2 and 3 we report the estimation results of the panel regression according to
Equation (14). Coefficients are reported in percent***. Standard errors are estimated according to Driscoll and
Kraay (1998). * denotes significant at 10%, ** denotes significant at 5%, *** denotes significant at 1%, whereby
p-values are rounded to two digits.

(1) (2) (3) (4)
Dependent variable

rexit rexit r̂ex,betait r̂ex,charit

constant 0.130 0.037 -0.022 -0.019
(7.17) *** (3.02) *** (1.81) * (-8.10) ***

T̂i,t−1 -0.081
(-4.80) ***

T̂ beta
i,t−1 -0.000 0.035 0.027

(0.00) (1.41) (1.88) *

T̂ char
i,t−1 -0.046 0.009 -0.008

(-2.15) ** (0.85) (0.027)

Time-Fixed Effects Yes Yes Yes Yes
Firm-Fixed Effects Yes Yes Yes Yes

Within-R2 17.97% 22,20% 50.89% 11.76 %
Observations 171,822 154,939 154,939 154,939
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